sec(y)dy的积分从0到π的6分之1等于自然log的3乘以什么的64次方如题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 15:42:03

sec(y)dy的积分从0到π的6分之1等于自然log的3乘以什么的64次方如题,
sec(y)dy的积分从0到π的6分之1等于自然log的3乘以什么的64次方
如题,

sec(y)dy的积分从0到π的6分之1等于自然log的3乘以什么的64次方如题,
高中的数学公式定理大集中 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式(口诀:奇变偶不变,符号看象限.) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α tan2α=2tanα/(1-tan2α ) 集合、函数 集合 简单逻辑 任一x∈A x∈B,记作A B A B,B A A=B A B={x|x∈A,且x∈B} A B={x|x∈A,或x∈B} card(A B)=card(A)+card(B)-card(A B) (1)命题 原命题 若p则q 逆命题 若q则p 否命题 若 p则 q 逆否命题 若 q,则 p (2)四种命题的关系 (3)A B,A是B成立的充分条件 B A,A是B成立的必要条件 A B,A是B成立的充要条件 函数的性质 指数和对数 (1)定义域、值域、对应法则 (2)单调性 对于任意x1,x2∈D 若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数 若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数 (3)奇偶性 对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数 若f(-x)=-f(x),称f(x)是奇函数 (4)周期性 对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数 (1)分数指数幂 正分数指数幂的意义是 负分数指数幂的意义是 (2)对数的性质和运算法则 loga(MN)=logaM+logaN logaMn=nlogaM(n∈R) 指数函数 对数函数 (1)y=ax(a>0,a≠1)叫指数函数 (2)x∈R,y>0 图象经过(0,1) a>1时,x>0,y>1;x<0,0<y<1 0<a<1时,x>0,0<y<1;x<0,y>1 a> 1时,y=ax是增函数 0<a<1时,y=ax是减函数 (1)y=logax(a>0,a≠1)叫对数函数 (2)x>0,y∈R 图象经过(1,0) a>1时,x>1,y>0;0<x<1,y<0 0<a<1时,x>1,y<0;0<x<1,y>0 a>1时,y=logax是增函数 0<a<1时,y=logax是减函数 指数方程和对数方程 基本型 logaf(x)=b f(x)=ab(a>0,a≠1) 同底型 logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1) 换元型 f(ax)=0或f (logax)=0 数列 数列的基本概念 等差数列 (1)数列的通项公式an=f(n) (2)数列的递推公式 (3)数列的通项公式与前n项和的关系 an+1-an=d an=a1+(n-1)d a,A,b成等差 2A=a+b m+n=k+l am+an=ak+al 等比数列 常用求和公式 an=a1qn_1 a,G,b成等比 G2=ab m+n=k+l aman=akal 不等式 不等式的基本性质 重要不等式 a>b b<a a>b,b>c a>c a>b a+c>b+c a+b>c a>c-b a>b,c>d a+c>b+d a>b,c>0 ac>bc a>b,c<0 ac<bc a>b>0,c>d>0 ac<bd a>b>0 dn>bn(n∈Z,n>1) a>b>0 > (n∈Z,n>1) (a-b)2≥0 a,b∈R a2+b2≥2ab |a|-|b|≤|a±b|≤|a|+|b| 证明不等式的基本方法 比较法 (1)要证明不等式a>b(或a<b),只需证明 a-b>0(或a-b<0=即可 (2)若b>0,要证a>b,只需证明 , 要证a<b,只需证明 综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法. 分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因” 复数 代数形式 三角形式 a+bi=c+di a=c,b=d (a+bi)+(c+di)=(a+c)+(b+d)i (a+bi)-(c+di)=(a-c)+(b-d)i (a+bi)(c+di )=(ac-bd)+(bc+ad)i a+bi=r(cosθ+isinθ) r1=(cosθ1+isinθ1)?r2(cosθ2+isinθ2) =r1?r2〔cos(θ1+θ2)+isin(θ1+θ2)〕 〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ) k=0,1,……,n-1 解析几何 1、直线 两点距离、定比分点 直线方程 |AB|=| | |P1P2|= y-y1=k(x-x1) y=kx+b 两直线的位置关系 夹角和距离 或k1=k2,且b1≠b2 l1与l2重合 或k1=k2且b1=b2 l1与l2相交 或k1≠k2 l2⊥l2 或k1k2=-1 l1到l2的角 l1与l2的夹角 点到直线的距离 2.圆锥曲线 圆 椭 圆 标准方程(x-a)2+(y-b)2=r2 圆心为(a,b),半径为R 一般方程x2+y2+Dx+Ey+F=0 其中圆心为( ), 半径r (1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系 (2)两圆的位置关系用圆心距d与半径和与差判断 椭圆 焦点F1(-c,0),F2(c,0) (b2=a2-c2) 离心率 准线方程 焦半径|MF1|=a+ex0,|MF2|=a-ex0 双曲线 抛物线 双曲线 焦点F1(-c,0),F2(c,0) (a,b>0,b2=c2-a2) 离心率 准线方程 焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0) 焦点F 准线方程 坐标轴的平移 这里(h,k)是新坐标系的原点在原坐标系中的坐标.1.集合元素具有①确定性②互异性③无序性2.集合表示方法①列举法 ②描述法③韦恩图 ④数轴法3.集合的运算⑴ A∩(B∪C)=(A∩B)∪(A∩C)⑵ Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB4.集合的性质⑴n元集合的子集数:2n真子集数:2n-1;非空真子集数:2n-2⑵并集元素个数:n(A∪B)=nA+nB-n(A∩B)5.N 自然数集或非负整数集Z 整数集 Q有理数集 R实数集6.简易逻辑中符合命题的真值表p 非p真 假假 真7、二倍角公式是:sin2 = cos2 = = = tg2 = .8、三倍角公式是:sin3 = cos3 = 9、半角公式是:sin = cos = tg = = = .10、升幂公式是: .11、降幂公式是: .12、万能公式:sin = cos = tg = 13、sin( )sin( )= ,cos( )cos( )= = .14、 = ; = ; = .15、 = .16、sin180= .17、特殊角的三角函数值: 0 sin 0 1 0 cos 1 0 0tg 0 1 不存在 0 不存在ctg 不存在 1 0 不存在 018、正弦定理是(其中R表示三角形的外接圆半径): 19、由余弦定理第一形式, = 由余弦定理第二形式,cosB= 20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则:① ;② ;③ ;④ ;⑤ ;⑥ 21、三角学中的射影定理:在△ABC 中, ,…22、在△ABC 中, ,…23、在△ABC 中: 八、 解析几何1、 沙尔公式: 2、 数轴上两点间距离公式: 3、 直角坐标平面内的两点间距离公式: 4、 若点P分有向线段 成定比λ,则λ= 5、 若点 ,点P分有向线段 成定比λ,则:λ= = ; = = 若 ,则△ABC的重心G的坐标是 .6、求直线斜率的定义式为k= ,两点式为k= .7、直线方程的几种形式:点斜式: , 斜截式: 两点式: , 截距式: 一般式: 经过两条直线 的交点的直线系方程是: 8、 直线 ,则从直线 到直线 的角θ满足: 直线 与 的夹角θ满足: 直线 ,则从直线 到直线 的角θ满足: 直线 与 的夹角θ满足: 9、 点 到直线 的距离:10、两条平行直线 距离是11、圆的标准方程是: 圆的一般方程是: 其中,半径是 ,圆心坐标是 思考:方程 在 和 时各表示怎样的图形?12、若 ,则以线段AB为直径的圆的方程是 经过两个圆, 的交点的圆系方程是: 经过直线 与圆 的交点的圆系方程是: 13、圆 为切点的切线方程是一般地,曲线 为切点的切线方程是: .例如,抛物线 的以点 为切点的切线方程是: ,即: .注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做.14、研究圆与直线的位置关系最常用的方法有两种,即: ①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离; ②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交.15、抛物线标准方程的四种形式是: 16、抛物线 的焦点坐标是: ,准线方程是: . 若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是: ,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是: .17、椭圆标准方程的两种形式是: 和 .18、椭圆 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 .其中 .19、若点 是椭圆 上一点, 是其左、右焦点,则点P的焦半径的长是 和 .20、双曲线标准方程的两种形式是: 和 .21、双曲线 的焦点坐标是 ,准线方程是 ,离心率是 ,通径的长是 ,渐近线方程是 .其中 .22、与双曲线 共渐近线的双曲线系方程是 .与双曲线 共焦点的双曲线系方程是 .23、若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ; 若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 . 24、圆锥曲线的焦参数p的几何意义是焦点到准线的距离,对于椭圆和双曲线都有: .25、平移坐标轴,使新坐标系的原点 在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是 在新坐标系下的坐标是 ,则 = , = .%D%A

sec(y)dy的积分从0到π的6分之1等于自然log的3乘以什么的64次方如题, [y/(1+y)]dy的积分等于多少在0到2之间的定积分 计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧 设曲线c是从点A(1,0)到B(-1,2)的直线段求积分(x+y)dy 求积分x^2*sec^2(y)*dy/dx+2xtan(y)=1,求表达式 计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O(0,0)到A(π,2)的一段计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y 求y=sec(x的平方+1)的微分dy 下面这道高数题怎样把累次积分化为极坐标积分了?∫dx∫f(x,y)dy x的积分区间为0到1 y的积分区间为(1-x)到√(1-x^2) ∫L((x-y)dx+(x+y)dy)/(x^2+y^2),其中y=2-2x^2上从点a(-1,0)到b(1,0)的一段弧,求曲线积分 (1-sinx平方)除以sinx从6分之π到2分之π的定积分 dy/y^3+y的积分 对积分 I=∫(0到1)dy ∫ (根号y 到y) sin(y/x)dx 交换积分顺序,并求该积分的值!求指教 多元函数积分的选择题设L为直线x+y=1上从点A(1,0)到B(0,1)的直线段,则∫(L)(x+y)dx-dy=? 19.多元函数积分的选择题设L为直线x+y=1上从点A(1,0)到B(0,1)的直线段,则∫(L)(x+y)dx-dy=? 积分号1到2 dx积分号1-x到2-x 根号下x^2+y^2分之一dy的积分怎么算 计算曲线积分∫L(sin2x+xy)dx+2(x^2-y^2)dy,其中L是曲线y=sinx上从(π,0)到(2π,0)的一段. 利用格林公式计算曲线积分.∫ e∧x [cosy dx +(y-siny)dy],曲线为y=sinx从(0,0)到(π,0)的一段.最好有过程. 设Q(x,y)在xoy平面上有一阶连续偏导数,曲线积分∫L 2xydx+Q(x,y)与路径无关,对任意t恒有∫L 2xydx+Q(x,y)dy从点(0,0)到(t,1)的积分等于从点(0,0)到(1,t)的积分,求Q(x,y)令P(X,Y)=2XY积分