A,B,C是平面上不共线的三点,动点P满足OP=OA+x(AB/AB的模sinB+AC/AC的模sinC),x>=0,则P的轨迹一定过三角形ABC的什么心

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:46:20

A,B,C是平面上不共线的三点,动点P满足OP=OA+x(AB/AB的模sinB+AC/AC的模sinC),x>=0,则P的轨迹一定过三角形ABC的什么心
A,B,C是平面上不共线的三点,动点P满足OP=OA+x(AB/AB的模sinB+AC/AC的模sinC),x>=0,则P的轨迹一定过三角形ABC的什么心

A,B,C是平面上不共线的三点,动点P满足OP=OA+x(AB/AB的模sinB+AC/AC的模sinC),x>=0,则P的轨迹一定过三角形ABC的什么心
题目有点模糊,P的轨迹应该是三角形的中线所在的直线,所以应该是一定过三角形的重心(三条中线的交点),画一下图,AB的模sinB= AC的模sinC,再乘以x,相当于一个系数k,再把OA移项到左边,变成:向量AP=k(向量AB+向量AC),括号里面等于以AB,AC为邻边的平行四边形对角线向量,所以P在这条线上,也就是BC边的中线上

已知O,A,B是平面上不共线的三点,若点C满足 O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC ),O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC λ O是平面上一定点,A,B,C是平面上不共线三点,求p的见相册同名图片 向量,与三角形结合的问题设0是平面上一定点,A,B,C是平面上不共线的三点,动点P满足向量0P=向量0A+λ(向量AB/|向量AB| 向量AC/|向量AC|)(λ≧0),则点P的轨迹一定通过三角形A B C 的什么心? 已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/sinc+AC/sinb),则P的轨迹一定通过△ABC的 为什么 已知A,B,C是平面上不共线的三点,O是三角形ABC的重心,动点P满足向量OP=1/3(1/2向量OA+1/2向量OB+2向量OC),则点P一定为AB边的三等分点.若P不是三等份点,是什么点? O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|),λ∈[0,+∞),为啥是外心啊 o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB向量的模 + AC向o是平面上的一点,A B C是平面上的不共线的三个点,动点P满足OP向量=OA向量+λ(AB向量/AB 已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满足向量OP=(向量OB+向量OC)/2+λ(向量AB/(|向量AB|cosB)+向量AC/(|向量AC|cosC),已知O是平面上一丁点,ABC是平面上不共线的三点,动点P满 已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量OC](λ∈R且λ≠0),O为 若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+无穷),则P的轨迹一定通过△ABC的().A.重心 B.垂心 C.外心 D.内心 设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心? O是平面上一点,A B C是平面上不共线的三点,平面内的的动点P满足向量OP=向量OA+X(向量AB+向量AC),若X=1/2向量PA*(向量PB+向量PC)的值为 向量与三角形的五心O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|).λ∈[0,+∞)问 P点一定过三角形的什么心.O是平面上一定点,A,B,C是平面上不共线的三个点, 平面上的点P与不共线三点A,B,C满足关系式:PA+PB+PC=AB,则下列结论正确的是平面上的点P与不共线三点A,B,C满足关系式:PA+PB+PC=AB,则下列结论正确的是A.P在CA上,且CP=2PA B.P在AB上,且AP=PB C.P在BC且BP=2PC 已知O是平面上的一定点,A,B,C是平面上不共线的三个点已知O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足OP=(OB+OC)/2+λ(AB/|AB|cosB+AC/|AC|cosC).λ∈(0,+∞),则动点P的轨迹一定通 1.o是平面上一定点,A B C 是平面上不共线的三个点 动点P满足 向量OP=向量OA+λ(向量AB+向量AC) λ≥0 则P一定通过三角形ABC的 重心 对么 2.o是平面上一定点,A B C 是平面上不共线的三个点 λ≥0 已知A,B,C是平面上不共线三点,O是三角形ABC的重心,动点P满足向量OP=三分之一(向量OA+向量OB+2向量OC),则动点P一定是三角形ABC的什么