三重积分∫∫∫zln(1+x^2+y^2+z^2)/1+x^2+y^2+z^2dV,其中V是上半球0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:33:18
三重积分∫∫∫zln(1+x^2+y^2+z^2)/1+x^2+y^2+z^2dV,其中V是上半球0
三重积分∫∫∫zln(1+x^2+y^2+z^2)/1+x^2+y^2+z^2dV,其中V是上半球0
三重积分∫∫∫zln(1+x^2+y^2+z^2)/1+x^2+y^2+z^2dV,其中V是上半球0
如果你题目没抄错的话,这类题用球坐标应该是可以解决的.实在太难打了,你先做试试,不会再追问吧.
你好。很高兴为你解答,答案是(ln2)/4,如图,(你大一?)欢迎追问,祝你学习进步。你看懂了吗?????第二张图片忽略之。
收起
三重积分∫∫∫zln(1+x^2+y^2+z^2)/1+x^2+y^2+z^2dV,其中V是上半球0
三重积分∫∫∫zln(1+x^2+y^2+z^2)/1+x^2+y^2+z^2dV,其中V是上半球0
求三重积分∫∫∫(x+y+z)dxdydz 积分域x^2+y^2+z^2=0
求三重积分∫∫∫1/(x+y+z)^2,Ω:0突然发现题弄错了,是3次方。求三重积分∫∫∫1/(x+y+z)^3,Ω:0
问一道三重积分问题计算三重积分∫∫∫y^2dxdydz,其中Ω为锥面z=(4x^2+4y^2)^1/2与z=2所围立体
求三重积分∫∫∫zdxdydz,其中积分区域为z=x^2+y^2,z=1,z=2所围区域
计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-2)^2
计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-1)^2
∫∫∫(x+y+z)dxdydz.其中Ω:0≤x≤2,|y|≤1,0≤z≤3; 求三重积分
计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2
积分域为Ω:y=1,z=y,z=0,y=x^2的柱面构成的三重积分∫∫∫ xzdυ怎样变成三次积分,上下限分别为什么?dv=dxdydz
求解:三重积分∫∫∫z^2dV, 被积区域为x^2+y^2+z^2
化三重积分∫∫∫f(x,y,z)dv为三次积分,其中积...
计算三重积分∫∫∫Ω(x^2+y^2)dv,Ω={(x,y,z)|(x^2+y^2)/2≤z≤2}
三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋转的曲面三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋转的曲面与平面x
三重积分∫∫∫xydxdydz,其中Ω由x^2+y^2=1,z=0,z=1所围区域
三重积分∫∫∫xydxdydz,其中Ω由x^2+y^2=1,z=0,z=1所围区域
计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域