已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+...+an,并有Sn满足Sn=n(an-a1)/2(1)求a的值(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由(3)对于数列{bn},假如存在一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:43:46
已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+...+an,并有Sn满足Sn=n(an-a1)/2(1)求a的值(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由(3)对于数列{bn},假如存在一
已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+...+an,并有Sn满足Sn=n(an-a1)/2
(1)求a的值
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn
已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+...+an,并有Sn满足Sn=n(an-a1)/2(1)求a的值(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由(3)对于数列{bn},假如存在一
(1)Sn=n(an-a1)/2,将n=1 代入
则S1=1(a1-a1)/2=0
又S1=a1 ,所以a1=0
故a=0;
(2)Sn=n(an-a1)/2=n*an/2
S(n-1)=(n-1)*a(n-1)/2
作差
Sn-S(n-1)=n*an/2-(n-1)a(n-1)/2
因为Sn-S(n-1)=an
所以an=n*an/2-(n-1)a(n-1)/2
通分并移项(n-1)a(n-1)=(n-2)an
an/a(n-1)=(n-1)/(n-2)
所以得到an=k(n-1),an 是等差数列
现在求系数k
当n=1时,a1=0,满足;
当n=2时,a2=k=p
故数列{an}的通项为an=p(n-1),是首项为0,公差为p的等差数列
(3)由题意:
pn=S(n+2)/S(n+1)+S(n+1)/S(n+2),
S(n+1)=[a1+a(n+1)](n+1)/2=n(n+1)p/2,
S(n+2)=[a1+a(n+2)](n+2)/2=(n+1)(n+2)p/2代入上式
得:pn=n/(n+2)+(n+2)/n
设Tn=∑pn
则Tn=b1+b2+...+bn
=2+2(1-1/3)+2+2(1/2-1/4)+...+2+2[1/n-1/(n+2)]
=2n+2[1-1/3+1/2-1/4+...+1/n-1/(n+2)]
故:Tn-2n=2[1-1/3+1/2-1/4+...+1/n-1/(n+2)]
=2{1/2[1+1/2-1/(n+1)-1/(n+2)}
=3-1/(n+1)-1/(n+2)
显然3-1/(n+1)-1/(n+2)<3
从而:Tn-2n<3
即:{p1+p2+……+pn-2n}的“上渐进值”为3.
死死死死死死死死死