在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与点O重合时,显然有PB=PE.(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 14:30:01

在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与点O重合时,显然有PB=PE.(
在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与点O重合时,显然有PB=PE.
(1)如图2,若点P在线段OA上(不与点A、C重合)延长BP交直线AD于点F,连接EF
1、求证:PB=PE
2、写出线段AF,EF,CE之间的一个等量关系,并证明你的结论.
(2)若点P在线段OC上(不与点O、C重合)PE⊥PB且PE交直线CD于点E,判断(1) 中的结论1、2是否成立?若不成立,写出相应结论.

在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与点O重合时,显然有PB=PE.(
⑴  上图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,
⊿BCE绕B逆时针旋转90°,到达⊿BAG.  ∠FBG=90º-45º=45º=∠FBE
⊿FBG≌⊿FBE﹙SAS﹚  EF=GF=GA+AF=EC+AF
⑵    下图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,
⊿BCE绕B逆时针旋转90°,到达⊿BAG.  ∠FBG=90º-45º=45º=∠FBE
⊿FBG≌⊿FBE﹙SAS﹚  EF=GF=AF-AG=AF-CE

如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过 正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点。(1)如图1,若点P在线段OA上运动(不与点A、O重合),作PE⊥PB交CD于点E. 正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF.(1)如图2,若点P在线段 在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与点O重合时,显然有PB=PE.( 正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上的动点.(1)如图1,若点P在线段AO上运动正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上的动点.(1)如图1,若点P在线段AO上运动,(不与点A 如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP.如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP(1):求证:BP+CP=根号2OP(2):档P在正方形内部时 如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP.如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP(1):求证:BP+CP=根号2OP(2):档P在正方形内部时 如图,在四边形ABCD中,AC=BD,对角线AC,BD交于点O,AC⊥BD,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是正方形. 在四边形ABCD中对角线AC与BD交于点O且AC⊥BD,AC=BD,点E.F.G.H.分别是边AB.BC.CD.DA的中点求证四边形EFGH是正方形 在平行四边形ABCD中,O是对角线AC中点,连接OB,OD,求∠DOB的度数 初三证明题:如图所示,在平行四边形ABCD中,对角线AC、BD交于点O,BE平分∠ABC的外角 且AE⊥BE求证:OE=½ (AB+BC)正方形ABCD,点O是对角线AC的中点,P为对角线AC上一动点,过点P做PF⊥DC于点F, 如图,在四边形ABCD中,AB=DC,对角线AC,BD交于点O,AC⊥BD,E,F,G,H分别是AB,BC,CD,DA的中点求证:四边形EFGH是正方形 如图,在四边形ABCD中,AB=DC,对角线AC,BD交于点O,AC⊥BD,E,F,G,H分别是AB,BC,CD,DA的中点证四边形EFGH是正方形 如图,在四边形ABCD中,AB=DC,对角线AC,BD交于点O,ac垂直于BD,E,F,G,H,分别是AB,BC,CD,DA的中点.求证:四边形EFGH是正方形. 如图,在四边形ABCD中,AB=DC,对角线AC,BD交于点O,AC⊥BD,E,F,G,H分别是AB,BC,CD,DA的中点。求证:四边形EFGH是正方形 初一几何推理题 (三段论)在正方形ABCD中,已知AB=CD,BC=AD,且点O是对角线AC的中点,是说明△AOF≌△COF的理由. 在矩形ABCD中已知O是对角线AC的中点EF是线段AC的中垂线,交AD,BC于E,F求证四边形AECF是菱形 正方形ABCD中,点O式对角线AC的中点,P是对角线AC上一动点,过点P正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,如图1,当点P与点O重合时,显然有DF⊥CF.(1)如图2,若点P