如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)当B如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)延长BE交A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 13:48:17
如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)当B如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)延长BE交A
如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)当B
如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数
如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)当B如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)延长BE交A
(1)依题意可知,BC=DC,∠BCE=∠DCE,CE=CE,所以△BEC≌△DEC.
(2)连接BD,交AC于点F.因为ABCD是正方形,所以AC垂直于BD,所以△BEF是直角三角形.
因为∠BED=120°,AC为对角线,所以∠BEF=60°,所以BF=2EF.
因为BC=6,且BF^2+CF^2=BC^2,BF=CF,所以BF=√18,所以EF=(√18)/2.
因为BE^2=BF^2+EF^2=18+9/2=45/2,
所以BE=√(45/2).
如图,在正方形ABCD中,对角线
如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP.如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP(1):求证:BP+CP=根号2OP(2):档P在正方形内部时
如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP.如图,正方形ABCD中,点O为对角线AC的中点,点P为正方形ABCD外一点,且BP⊥CP(1):求证:BP+CP=根号2OP(2):档P在正方形内部时
如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?
如图,在正方形ABCD中,AC是对角线,AE平分∠BAC求证:AC=AB+BE
如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)当B如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED. (1)求证:△BEC≌△DEC; (2)延长BE交A
如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC; (2)当BC=6,∠如图,在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE
如图,在正方形ABCD中,AB=1,点P是对角线AC上的一点,分别以AP,PC为对角线作正方形,侧两个正方形的周长
已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB上任意一点,EG垂直AC,已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB上任意一点,EG垂直AC,EF垂直BD垂足分别为G,F求证 EG+EF=二分之一AC
已知:如图,正方形ABCD中,AC、BD为对角线,将∠BAC绕顶点A逆时针旋转已知:如图,正方形ABCD中,AC,BD为对角线,将∠BAC绕顶点A逆时针旋转α°(0
已知 如图 在正方形ABCD中,点E在对角线AC上,求证BE=DE
如图,正方形ABCD中,AC,BD 为对角线,将∠BAC绕顶点A逆时针旋转a°(0
如图,正方形ABCD的边长为4,△ABE是等边三角形,点E在正方形ABCD中,在对角线AC上存有一点P使PD+PE的和为最小,则这个最小值是?
如图,在正方形ABCD中,P是对角线AC上一点,PB⊥PE,求证:PB=PE
如图,正方形ABCD的边长为4,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上存在一点P……
如图,在平面直角坐标系XOY中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC,BD相交于点P.如图,在平面直角坐标系XOY中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC,BD相交于点P,顶点A
如图,已知点E为正方形ABCD对角线ac上一动点,连接BE
已知:如图,在正方形ABCD中,对角线AC、BD相交于点O,E是AB上任意一点,EG⊥AC,EF⊥BD,垂足分别为G、F.求证:EG+EF=1/2AC