函数f(x)=ax*2+2x+1,若对任意x∈【1,+∞),f(x)>0恒成立,则实数a的取值范围是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:30:03
函数f(x)=ax*2+2x+1,若对任意x∈【1,+∞),f(x)>0恒成立,则实数a的取值范围是
函数f(x)=ax*2+2x+1,若对任意x∈【1,+∞),f(x)>0恒成立,则实数a的取值范围是
函数f(x)=ax*2+2x+1,若对任意x∈【1,+∞),f(x)>0恒成立,则实数a的取值范围是
a=0,f(x)=2x+1符合题意.
若a0,则
a>0,对称轴x=-1/a=0,a>-3.
所以实数a的取值范围是[0,+无穷).
已知函数f(x)=ax*x+2ax-2,若对任意实数想,都有f(x)已知函数f(x)=ax*x+2ax-2,若对任意实数x,都有f(x)
已知实数a不等于0函数f(x)={ax(x-2)^2}x属于R若对任意x属于[-2,1]不等式f(x
已知函数f(x)=x3+3ax-1的导函数为f′(x),g(x)=f′(x)-ax-3.已知函数f(x)=x3+3ax-1的导函数为f′(x),g(x)=f′(x)-ax-3.(1)若x•g′(x)+6>0对一切x≥2恒成立,求实数a的取值范围;(2)若对满足
若函数f(x)=x^2+ax+b对任意正整数n,有f(n)
若函数f(x)=x^2+ax+b对任意正整数n,有f(n)
已知函数f(x)=ax^2+4ax-4,若对于x∈【-3,-1】,f(x)
已知函数f(x)=ax^2+bx+c 若 f(0)=0,f(x+1)=f(x)+x+1对任意x∈R成立求f(x)
已知函数f(x)=ax^2+bx+c,若f(0)=0,且f(x+1)=f(x)+1+x对任意的x属于R成立,求f(x)
设函数f(x)=e^x-e^-x(1)证明f(x)的导数f'(x)>=2 (2)若对所有x≥0有f(x)≥ax,求a的取值范围
已知x∈R+ ,函数 f(x)=ax^2+2ax+1,若f(m)
函数f(x)=ax^2+ax-1,若f(x)
已知函数f(x)=x^2-ax+4,x∈[-3,-1],若f(x)
已知函数f (x)=(x+1)ln(x+1)-ax^2-x(a∈R),若对任意X>0 f(x)
已知函数f(x)=x^3+ax^2-1,x∈R,a∈R(1)若a=2,求函数f(x)的极小值(2)设对任意x∈(-无穷,0),f(x)
已知函数f(x)=e^ax-x,其中a≠0已知函数f(x)=e^ax-x,其中a≠0(1)若对一切x∈R,f(x)>=1恒成立,求a的取值集合(2)在函数f(x)的图像上取两定点,A(x1,f(x1))B(x2,f(x2))(x1
高一数学、已知函数f(x)=x的平方+1/ax+b,若对任意的实数x都有f(-x)=-f(x),且f(1)=2已知函数f(x)=x的平方+1/ax+b,若对任意的实数x都有f(-x)=-f(x),且f(1)=2(1)求实数a、b的值(2.)用定义证明f(x)在
已知函数f(x)=ax^2+bx+1(a不等于0,a,b为实数),设F(x)={①f(x)(x>0)②-f(x)(x<0)}.①:若f(-1...已知函数f(x)=ax^2+bx+1(a不等于0,a,b为实数),设F(x)={①f(x)(x>0)②-f(x)(x<0)}.①:若f(-1)=0且对任意实数
设函数f(x)=ax^2+bx+1,(1)若f(-1)=0,对任意实数f(x)>0恒成立,求f(x)设函数f(x)=ax^2+bx+1,(1)若f(-1)=0,对任意实数f(x)>0恒成立,求f(x)(2)在(1)的条件下,x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的范围(3)在(1)