已知向量a=(cos2x sin2x) b=(cosx sinx) (1) 求证(a+b)⊥(a-b) (2)若|a-b|=1 求cosx的值已知向量a=(cos2x sin2x) b=(cosx sinx)(1) 求证(a+b)⊥(a-b)(2)若|a-b|=1 求cosx的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:27:42

已知向量a=(cos2x sin2x) b=(cosx sinx) (1) 求证(a+b)⊥(a-b) (2)若|a-b|=1 求cosx的值已知向量a=(cos2x sin2x) b=(cosx sinx)(1) 求证(a+b)⊥(a-b)(2)若|a-b|=1 求cosx的值
已知向量a=(cos2x sin2x) b=(cosx sinx) (1) 求证(a+b)⊥(a-b) (2)若|a-b|=1 求cosx的值
已知向量a=(cos2x sin2x) b=(cosx sinx)
(1) 求证(a+b)⊥(a-b)
(2)若|a-b|=1 求cosx的值

已知向量a=(cos2x sin2x) b=(cosx sinx) (1) 求证(a+b)⊥(a-b) (2)若|a-b|=1 求cosx的值已知向量a=(cos2x sin2x) b=(cosx sinx)(1) 求证(a+b)⊥(a-b)(2)若|a-b|=1 求cosx的值
第一问很好解 (a+b)=(cos2x+cosx,sin2x+sinx) a-b=(cos2x-cosx,sin2x-sinx)
所以相乘得cos2x^2-cosx^2+sin2x^2-sinx^2=1-1=0所以为垂直
第二问将a-b的绝对值平方得 cos2x^2+sin2x^2+cosx^2+sinx^2-2sin2xsinx-2cos2xcosx=1
推导出 2-2sin2xsinx-2cos2xcosx=1
得 sin2xsinx+cos2xcosx=1/2
可得2sin2x^2*cosx+(cosx^2-sinx^2)cosx=1/2
推导得 cosx^3+sinx^2cosx=1/2
然后提出cosx
得 cosx=1/2

已知向量a=(sin2x,-cos2x),向量b=(sin2x,根号3sin2x),若函数f(x)=向量a 已知向量a(cosx,1)向量(1,-sinx)向量a垂直向量b则sin2x+cos2x= 已知tanx=2求(sin2x+cos2x)/(cos2x-sin2x) 已知tanx=2,求cos2x-sin2x分之sin2x+cos2x 已知a向量=(cos2x,sin2x),b向量=(cosx,sinx)且x属于【0,π】求函数f(x)=a向量*b向量-|a向量+b向量|*sin(x/2)的最小值 已知向量a =(cosx,sinx)向量b=(cos2x-1,sin2x)向量c=(cos2x,sin2x-根号3)其中x≠kπ,k∈Z(1)求证:向量a⊥向量b(2)设f(x)=向量a*向量c,且x∈(0,π),求f(x)的值域 已知向量a=(根3sin2x,cos2x),),b=(cos2x,-cos2x).x∈(7/24∏,5/12∏),a*b+1/2=-3/5,求cos4x y=sin2x按向量A平移后y=cos2x+1 已知:向量a=(根号3,-1),b=(sin2x.cos2x)函数f(x)=a.b 若f(x)=0且0 已知向量A=(1-tanX,1),B=(1+sin2X+cos2X,-3),记f(X)=A*B.求f(x)的定义域,值域最小正周期. 已知向量A=(1-tanX,1),B=(1+sin2X+cos2X,-3),记f(X)=A*B.求f(x)的定义域,值域最小正周期. 已知向量a=(sin2x,根号3).b=(1,-cos2x),x属于R,1,若a垂直于b,且0 已知向量a=(1,根号3),向量b=(sin2x,-cos2x),函数f(x)=向量a*向量b1.求函数f(x)的最小正周期2.求函数f(x)的最小值和最大值 已知向量a=(cos2x,1),b向量=(1,sin2x),x∈R,函数f(x)=向量a乘向量b.(1)求函数f(x)的最小正周期.过程. 已知函数f(x)=a的向量乘b的向量,其中向量a=(m,cos2x),向量b=(1+sin2x,1),x...已知函数f(x)=a的向量乘b的向量,其中向量a=(m,cos2x),向量b=(1+sin2x,1),x属于R,且函数y=f(x)的图象经过(丌/4,2),(1)求实数m的值,(2)求 已知tanX=2,则(3sin2X+2cos2X)/(cos2X y=sin2x的图像按a向量平移后,有y=cos2x+1,求a向量 已知向量a=(cos2x sin2x) b=(cosx sinx) (1) 求证(a+b)⊥(a-b) (2)若|a-b|=1 求cosx的值已知向量a=(cos2x sin2x) b=(cosx sinx)(1) 求证(a+b)⊥(a-b)(2)若|a-b|=1 求cosx的值