求高中数学必修1 2 3 和选修2 3的数学公式 急有的速度啊?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:31:54
求高中数学必修1 2 3 和选修2 3的数学公式 急有的速度啊?
求高中数学必修1 2 3 和选修2 3的数学公式 急有的速度啊?
求高中数学必修1 2 3 和选修2 3的数学公式 急有的速度啊?
乘法与 因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程 的解-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注: 韦达定理 判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有 共轭复数 根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 某些 数列 前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 5 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱 侧面积 S=c*h 斜棱柱 侧面积 S=c'*h 正棱锥 侧面积 S=1/2c*h' 正 棱台 侧面积 S=1/2(c+c')h' 圆台 侧面积 S=1/2(c+c')l=pi(R+r)l 球的 表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的 弧度 数r >0 扇形面积公式 s=1/2*l*r 锥体 体积公式 V=1/3*S*H 圆锥体 体积公式 V=1/3*pi*r2h 斜棱 柱体 积V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 数列基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、 等差数列 的 通项公式 :an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个 常数 . 11、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且 常数项 为0;当d=0时(a1≠0),Sn=na1是关于n的 正比例 式. 12、 等比数列 的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn= Sn= 三、有关等差、等比数列的结论 14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列. 15、等差数列{an}中,若m+n=p+q,则 16、等比数列{an}中,若m+n=p+q,则 17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列. 18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列. 19、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、、 仍为等比数列. 20、等差数列{an}的任意等距离的项构成的数列仍为等差数列. 21、等比数列{an}的任意等距离的项构成的数列仍为等比数列. 22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 24、{an}为等差数列,则 (c>0)是等比数列. 25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列. 26. 在等差数列 中: (1)若项数为 ,则(2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则(2)若数为 则, 四、 数列求和 的常用方法: 公式法 、裂项相 消法 、 错位相减法 、 倒序相加法 等.关键是找数列的通项结构. 28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、 裂项法 求和:如an=1/n(n+1) 31、倒序相加法求和:如an= 32、求数列{an}的最大、 最小项 的方法: ① an+1-an=……如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= 33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求 (1)当 >0,d<0时,满足 的项数m使得 取最大值. (2)当 <0,d>0时,满足 的项数m使得 取最小值. 在解含 绝对值 的数列最值问题时,注意转化思想的应用.
满意请采纳
喊声大哥 然后采纳答案,过几天把我以前整理的找给你~绝对实用。都是用得到的~~全部记住,数学20分飙到100分不成问题。