化简:(2-1)(2+1)(22+1)(24+1)…(216+1)+1=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:21:36
化简:(2-1)(2+1)(22+1)(24+1)…(216+1)+1=
化简:(2-1)(2+1)(22+1)(24+1)…(216+1)+1=
化简:(2-1)(2+1)(22+1)(24+1)…(216+1)+1=
原式=(2^2-1)(2^2+1)(2^4+1).(2^16+1)_+1
=(2^4-1)(2^4+1).(2^16+1)+1
=.
=(2^16-1)(2^16+1)-1
=2^32-1+1
=2^32
(2-1)(2+1) (22+1)(24+1)…(216+1)+1
=(22-1)(22+1)(24+1)…(216+1)+1
=(24-1)(24+1)…(216+1)+1
=232-1+1
=2的32次方
化简:(2-1)(2+1)(22+1)(24+1)…(216+1)+1=
化简 ||-X-1|-2|
1计算 2化简
1/3:1/2化简
化简 1/立方根2+1
化简1/3:1/2
1-2^(-2008)/1-2^(-1)化简
化简 (2n-1)*(2n+1)
-1/2(-2)^n-1=化简
化简(1/2x+1)(x-2)
化简 (2n+1)!/(2n-1)!
化简:根号(11...11—-22...22)有(2n个1)(n个2)
化简,4sin^2a(1-sin^2a)+cos^22a,
2√1/3化简
化简:2(a+1)-a
根号2分之1化简
化简:cos^2A-1
化简:|x-1|+|x+2|