大学数学极限问题,求解.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:03:42

大学数学极限问题,求解.
大学数学极限问题,求解.

大学数学极限问题,求解.
左极限为-1,右极限为1,两个不等,所以不存在

左极限是-1,右极限是1
不符合左右极限都存在且相等这一极限存在的充要条件
如果直接按定义证:
反证法:
假设x->0,f(x)极限存在,设为α,则
任意ε>0,存在σ>0,使得任意x满足|x-0|<σ,有|f(x)-α|<ε
令x1=σ/2,x2=-σ/2,x1、x2满足|x-0|<σ,
所以|f(x1)-f(x2)|=|(f(x1)-α)...

全部展开

左极限是-1,右极限是1
不符合左右极限都存在且相等这一极限存在的充要条件
如果直接按定义证:
反证法:
假设x->0,f(x)极限存在,设为α,则
任意ε>0,存在σ>0,使得任意x满足|x-0|<σ,有|f(x)-α|<ε
令x1=σ/2,x2=-σ/2,x1、x2满足|x-0|<σ,
所以|f(x1)-f(x2)|=|(f(x1)-α)-(f(x2)-α)|≤|f(x1)-α|+|f(x2)-α|<ε+ε=2ε
又因为|f(x1)-f(x2)|=|σ/2+1-(-σ/2-1|=2+σ>2
所以2ε>|f(x1)-f(x2)|>2,即ε>1,与ε任意性不符,矛盾。
所以f(x)在x=0极限不存在。

收起