设x>0,y>0,x+y=1,则根号下x+根号下y的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:51:38

设x>0,y>0,x+y=1,则根号下x+根号下y的最大值
设x>0,y>0,x+y=1,则根号下x+根号下y的最大值

设x>0,y>0,x+y=1,则根号下x+根号下y的最大值
√(√x +√y)²
=√(x+2√xy+y)
=√(1+2√xy)
因为 x+y≥2√xy
所以 √(1+2√xy)≤√(1+x+y)≤√2
【希望我的回答能够帮到你】

根号x+根号y=根号((根号x+根号y)^2)=根号(1+2根号(xy))<=根号(1+1),所以原式最大值为根号2。