a>2,log以(a-1)为底a的对数与log以a为底(a+1)对数比较大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:40:59
a>2,log以(a-1)为底a的对数与log以a为底(a+1)对数比较大小
a>2,log以(a-1)为底a的对数与log以a为底(a+1)对数比较大小
a>2,log以(a-1)为底a的对数与log以a为底(a+1)对数比较大小
如图所示,
图片需要审核,请稍等
用换底公式计算,都换成以a为底的对数,则
log(a-1)(a)-log(a)(a+1)
=1/log(a)(a-1)-log(a)(a+1)
=〔1-log(a)(a+1)×log(a)(a-1)〕/log(a)(a-1)
={1-log(a)〔(a+1)(a-1)〕}/log(a)(a-1)
={1-log(a)[a^2-1]}/log(a)(a-1)<...
全部展开
用换底公式计算,都换成以a为底的对数,则
log(a-1)(a)-log(a)(a+1)
=1/log(a)(a-1)-log(a)(a+1)
=〔1-log(a)(a+1)×log(a)(a-1)〕/log(a)(a-1)
={1-log(a)〔(a+1)(a-1)〕}/log(a)(a-1)
={1-log(a)[a^2-1]}/log(a)(a-1)
={log(a)(a)-log(a)[a^2-1]}/log(a)(a-1)
=log(a)[a/(a^2-1)]/log(a)(a-1)
由于a>2,所以a^2-1-a>2a-1-a=a-1>1
所以a^2-1>a,即0所以log(a)[a/(a^2-1)]<0
由于a>2,所以0
所以log(a-1)(a)
收起
这个题目不难,用求导的方法
f(x)=log以(x-1)为底,x对数
f(x)的导数分子为 (x-1)ln(x-1) - xlnx < 0
所以,f(x)为减函数,log(a-1)(a) > log(a)(a+1)
公式不好打,所以省略了过程……
将2式相减
lga/lg(a-1)-(lg(a+1)/lga)
=((lga)^2-lg(a-1)lg(a+1))/lga*lg(a-1)
=(lga*a-lg(a-1)*(a+1))/(lga*lg(a-1))
因为a*a>(a-1)*(a+1)
所以前式大于后式