四棱锥P-ABCD的底面ABCD为菱形,角BAD=60度,侧面PAD为等边三角形,当二面角P-AD-B为120度时,直线PB与底面ABCD所成的角为多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:20:29

四棱锥P-ABCD的底面ABCD为菱形,角BAD=60度,侧面PAD为等边三角形,当二面角P-AD-B为120度时,直线PB与底面ABCD所成的角为多少
四棱锥P-ABCD的底面ABCD为菱形,角BAD=60度,侧面PAD为等边三角形,当二面角P-AD-B为120度时,直线PB与底面
ABCD所成的角为多少

四棱锥P-ABCD的底面ABCD为菱形,角BAD=60度,侧面PAD为等边三角形,当二面角P-AD-B为120度时,直线PB与底面ABCD所成的角为多少
令AD的中点为E,过P作PF⊥BE交BE的延长线于F.
利用赋值法,设AB=1.
∵ABCD是菱形,∴AD=BC=AB=1.
∵E是AD的中点,∴AE=1/2.
由AE=1/2、AB=1、∠BAE=60°,得:AE⊥BE.
∴由勾股定理,有:BE=√(AB^2-AE^2)=√(1-1/4)=√3/2.
∵△PAD是等边三角形,∴PA=PD=AD=1,∴PE=√3/2.且PE⊥AE.
由BE⊥AE、PE⊥AE,得:∠PEB为二面角P-AD-B的平面角,∴∠PEB=120°.
由PE=√3/2、BE=√3/2,得:PE=BE,∴∠PBE=∠BPE=(180°-∠PEB)/2=30°.
∵AE⊥PE、AE⊥BE、PE∩BE=E,∴AE⊥平面PBE,而F在BE的延长线上,∴AE⊥平面PBF,
∴PF⊥AE,又PF⊥BE,AE∩BE=E,∴PF⊥平面ABE,∴∠PBE为PB与平面ABCD所成的角,
∴PB与平面ABCD所成的角为30°.

已知四棱锥P-ABCD的底面ABCD为菱形,E是PD的中点.求证:PB∥ACE 如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:PA∥平面BDE.求大神帮助 已知四棱锥P-ABCD的底面是菱形,E为PA的中点,求证:pc//平面BDE. 已知四棱锥P-ABCD的底面ABCD是菱形,PA垂直平面ABCD,点F为PC的中点.求PA平行平面B 如图,在四棱锥P一ABCD中,底面ABCD是菱形,PA垂直ABcD,M为PD的中点1求证PB 已知四棱锥P-ABCD,底面ABCD是角A=60°,边长为a的菱形,又PA垂直于底ABCD,且PD=CD, 四棱锥P-ABCD中,底面ABCD是角DAB=60度的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)AD...四棱锥P-ABCD中,底面ABCD是角DAB=60度的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)AD 四棱锥P-ABCD的底面为正方形,PD垂直底面ABCD 如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD ,E为PC的中点.求证,1,PA平行 平面BDE...如图所示的四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD ,E为PC的中点.求证,1,PA平行 平面BDE.2,平面PAC⊥ 四棱锥P-ABCD的底面ABCD为正方形,且PD垂直于底面ABCD,N为PB中点,则三棱锥P-ANC与四棱锥P-ABCD的...四棱锥P-ABCD的底面ABCD为正方形,且PD垂直于底面ABCD,N为PB中点,则三棱锥P-ANC与四棱锥P-ABCD的 如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形, 如图在四棱锥P—ABCD中,底面ABCD是菱形, 在底面为正方形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=2,则四棱锥P-ABCD的体积为 四棱锥P-ABCD的底面ABCD为菱形,角BAD=60度,侧面PAD为等边三角形,当二面角P-AD-B为120度时,直线PB与底面ABCD所成的角为多少 四棱锥P-ABCD中,底面ABCD为菱形,PD=AD,角DAB=60度,PD⊥底面ABCD,求证AC⊥PB 四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD,见补四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,侧面PAD是边长为2的等边三角形,且侧面PAD⊥底面AB 如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.求二面角A-BC-P的大小. 空间几何:如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°(1)求证:AD⊥PB (2)