二次函数y=a(x)的平方+bx+c的图象与性质
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:23:33
二次函数y=a(x)的平方+bx+c的图象与性质
二次函数y=a(x)的平方+bx+c的图象与性质
二次函数y=a(x)的平方+bx+c的图象与性质
二次函数(标准形式为 y = ax^2 + bx + c [a不等于0,a b c 均为常数])的函数图象:
当 a > 0 时开口向上;当 a < 0 时开口向下.
对称轴为直线 x = -(b/2a)
顶点坐标是 (-[b/2a],[4ac-b^2]/[4a])
二次函数的图象
二次函数的图象是一条抛物线.
1、抛物线当a>0时,向上无限延伸,同时a>0,抛物线开口向上
抛物线当a
分类讨论a的值,当a=0,1,>1,<1,还有计算(x)的平方+bx+c的值域
二次函数y=ax2+bx+c(a≠0)的图像及性质(2007年12月6日)
1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 y=ax2 y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c
顶点坐标 ...
全部展开
二次函数y=ax2+bx+c(a≠0)的图像及性质(2007年12月6日)
1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式 y=ax2 y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c
顶点坐标 (0,0) (h,0) (h,k) (-b/2a ,(4ac-b²)/4a)
对 称 轴 x=0 x=h x=h x= -b/2a
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到 y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
因此,研究抛物线 y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,
可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,
对称轴是直线x=- b/2a,顶点坐标是(-b/2a ,(4ac-b²)/4a).
3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤- b/2a时,y随x的增大而减小;当x≥- b/2a时,y随x的增大而增大.
若a<0,当x≤- b/2a时,y随x的增大而增大;当x≥- b/2a时,y随x的增大而减小.
4.抛物线y=ax2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x2-x1|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x=-b/2a ,y最小(大)值=(4ac-b²)/4a
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).
收起