初二的要构造八字形全等的数学证明题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:43:41

初二的要构造八字形全等的数学证明题
初二的要构造八字形全等的数学证明题

初二的要构造八字形全等的数学证明题
已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:              ?
(2)仔细观察,在图2中“8字形”的个数:   个?
(3)在图2中,若∠D=40°B=36°,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)
(1)结论:∠A+∠D=∠C+∠B;
(2)结论:六个;
(3)由∠D+∠1+∠2=∠B+∠3+∠4①(∵∠AOD=∠COB),
由∠1=∠2,∠3=∠4,
∴40°+2∠1=36°+2∠3
∴∠3-∠1=2°(1)
由∠ONC=∠B+∠4=∠P+∠2,②
∴∠P=∠B+∠4-∠2=36°+2°=38°;
(4)由①∠D+2∠1=∠B+2∠3,
由②2∠B+2∠3=2∠P+2∠1
①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1
∠D+2∠B=2∠P+∠B.
∴∠P=二分之一(∠D+∠B)

八字形

说明白点

(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC(对顶角相等),
∴∠A+∠D=∠C+∠B;
(2)①线段AB、CD相交于点O,形成“8字形”;
②线段AN、CM相交于点O,形成“8字形”;
③线段AB、CP相交于点N,形成“8字形”;
④线段AB、CM相交于点O,形成“8字形”;
⑤线段AP、CD相交于点M,形成“8...

全部展开

(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC(对顶角相等),
∴∠A+∠D=∠C+∠B;
(2)①线段AB、CD相交于点O,形成“8字形”;
②线段AN、CM相交于点O,形成“8字形”;
③线段AB、CP相交于点N,形成“8字形”;
④线段AB、CM相交于点O,形成“8字形”;
⑤线段AP、CD相交于点M,形成“8字形”;
⑥线段AN、CD相交于点O,形成“8字形”;
故“8字形”共有6个;
(3)∠DAP+∠D=∠P+∠DCP,①
∠PCB+∠B=∠PAB+∠P,②
∵∠DAB和∠BCD的平分线AP和CP相交于点P,
∴∠DAP=∠PAB,∠DCP=∠PCB,
由①+②得:
∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,
即2∠P=∠D+∠B,
又∠D=40°,∠B=36°,
∴2∠P=40°+36°=76°,
∴∠P=38°.
答案:(1)∠A+∠D=∠C+∠B;
(2)6.

收起