如图,△ABC中,AB>AC,AT是∠BAC的平分线,在BC上有一点S,是BS=TS,求证:AS²-AT²=(AB-AC)²打错了,是BS=TC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:45:28
如图,△ABC中,AB>AC,AT是∠BAC的平分线,在BC上有一点S,是BS=TS,求证:AS²-AT²=(AB-AC)²打错了,是BS=TC
如图,△ABC中,AB>AC,AT是∠BAC的平分线,在BC上有一点S,是BS=TS,求证:AS²-AT²=(AB-AC)²
打错了,是BS=TC
如图,△ABC中,AB>AC,AT是∠BAC的平分线,在BC上有一点S,是BS=TS,求证:AS²-AT²=(AB-AC)²打错了,是BS=TC
记AB=c,AC=b,BC=a
则由角平分线的性质:
BT:TC=c:b
BT+TC=a
于是有:
TC=ab/(b+c)=BS,
BT=ac/(b+c)
SC=a-BS=ac/(b+c)
过点A做BC垂直线交BC于H,
HC=(a^2+b^2-c^2)/(2a)
勾股定理可得
AS^2-AT^2=(AH^2+SH^2)-(AH^2+TH^2)
=SH^2-TH^2
=(SC-HC)^2-(TC-HC)^2
=SC^2-TC^2-2HC(SC-TC)
=[ac/(b+c)]^2-[ab/(b+c)]^2-2[(a^2+b^2-c^2)/(2a)][(ac-ab)/(b+c)]
=a^2(c^2-b^2)/(b+c)^2-(a^2+b^2-c^2)(c^2-b^2)/(b+c)^2
=(c^2-b^2)^2/(b+c)^2
=(c-b)^2
=(AB-AC)^2
http://zhidao.baidu.com/link?url=B_SheywTJwT6gadnqczxVCOV7wznbA-IUOwNS_0fuLmaX4GKTAz7Eq6RDTPg5nG4NSC4EngifEuBCmcFkJiraq
这有个类似的,你参考下吧