已知中点在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A、B两点,D是AB中点,若|AB|=2根号2.OD的斜率K=根号2/2,求椭圆方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:52:49

已知中点在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A、B两点,D是AB中点,若|AB|=2根号2.OD的斜率K=根号2/2,求椭圆方程.
已知中点在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A、B两点,D是AB中点,若|AB|=2根号2.
OD的斜率K=根号2/2,求椭圆方程.

已知中点在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A、B两点,D是AB中点,若|AB|=2根号2.OD的斜率K=根号2/2,求椭圆方程.
设椭圆方程为:x^2/a^2+y^/b^2=1 设A点坐标为(x1,y1),B点坐标为(x2,y2)
将直线方程y=1-x 代入到椭圆方程得:
b^2x^2+a^2(1-x)^2=a^2b^2
(a^2+b^2)x^2-2a^2x+a^2-a^2b^2=0 (1)
则有:
x1+x2=2a^2/(a^2+b^2)
x1x2=(a^2-a^2b^2)/(a^2+b^2)
又因为:
y1=1-x1
y2=1-x2
则有:
y1+y2=2-(x1+x2)
y1-y2=x2-x1
AB的中点的坐标为((x1+x2)/2,(y1+y2)/2),O为原点,直线OD的斜率为:
k=[(y1+y2)/2-0]/[(x1+x2)/2-0]=(y1+y2)/(x1+x2)=√2/2
y1+y2=√2/2*(x1+x2)=2-(x1+x2) (将y1+y2=2-(x1+x2)代入)
(x1+x2)(1+√2/2)=2 x1+x2=4-2√2
|AB|=√[(x1-x2)^2+(y1-y2)^2] (将y1-y2=x2-x1代入)
=√2*√(x1-x2)^2=2√2
x1-x2=2或者x1-x2=-2
当x1-x2=2时,x1=3-√2 x2=1-√2
当x1-x2=-2时,x1=1-√2 x2=3-√2
所以方程(1)的两根为1-√2和3-√2,代入即可求出a,b

已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜已知中心在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A,B两点,D是AB的中点,若AB 已知椭圆的中心在原点,对称轴在坐标轴上,椭圆经过A(-4,0) B(0,5)求椭圆标准方程 已知椭圆的中点在原点,以坐标轴为对称轴,且经过两点P1(根号6,1)P2(-根号3,-根号2),求该椭圆的方程 已知中点在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A、B两点,D是AB中点,若|AB|=2根号2.OD的斜率K=根号2/2,求椭圆的方程 已知中点在原点,对称轴在坐标轴上的椭圆C与直线l:x+y=1相交于A、B两点,D是AB中点,若|AB|=2根号2.OD的斜率K=根号2/2,求椭圆方程. 已知椭圆的中点在原点,焦点在坐标轴上,长轴长是短轴长的3倍,椭圆过点M(0,-3),求椭圆的方程.急. 已知椭圆中心在原点,且以坐标轴为对称轴1,已知椭圆中心在原点,且以坐标轴为对称轴,它到直线x+y=1相交于A,B两点,C是AB的中点,且|AB|=2√2,OC的斜率是√2/2,求该椭圆的方程(整体代入)x^2/3+(√2y^2/ 已知椭圆的中点在原点,对称轴是坐标轴,直线y=二倍根号2/2*x与椭圆在第一象限内的交点是M,点M在x轴上的射影恰好是椭圆的右焦点F2,另一个焦点是F1.(1)求椭圆的离心率(2) 已知椭圆的中心在原点,对称轴在坐标轴上,两个焦点为F1(-1,0) F2...已知椭圆的中心在原点,对称轴在坐标轴上,两个焦点为F1(-1,0) F2(1,0)离心率e=√2/2 (1)求椭圆方程 长轴长是短轴长的两倍,且过点(2,-6),中心在原点,对称轴在坐标轴上的椭圆方程 已知中心在原点,对称轴为坐标轴的椭圆与直线x+y=1相交于AB两点,且AB=2根号2,连结已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜率为√2 中心在原点,对称轴为坐标轴的椭圆与直线x+y=3交于两点,AB=2根号2,OC斜率为2,c为AB中点,求椭圆方程. 已知椭圆c的中心在坐标原点,对称轴为坐标轴,左右焦点分别为F1,F2且椭圆c的右焦点F2,与抛物线y^2=4√3x的焦点重合,椭圆上第一象限内的点p满足pf1⊥pf2且△pf1f2的面积为1求椭圆c的标准方程 已知中心为原点,对称轴为坐标轴的椭圆焦点在x轴上,离心率e=√2/2,直线x+y+1=0与椭圆交于PQ两点且OP⊥OQ,求椭圆方程 已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4.1).N(2.2).求椭圆C的方程. 根据中点在原点、以对称轴为坐标轴、离心率为2/1、长轴长为8 写出椭圆方程 已知椭圆的中心在原点,对称轴为坐标轴,且a+b=10,焦距为4根号5,则椭圆的方程是? 已知椭圆的中心在原点.以坐标轴为对称轴.且经过两点p1(跟号6,1),p2(-跟3,-跟2),求椭圆的方程.