圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,在满足两个条件的园中,求圆心到点p(0 3)的距离最小的圆的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:31:28

圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,在满足两个条件的园中,求圆心到点p(0 3)的距离最小的圆的方程
圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,
在满足两个条件的园中,求圆心到点p(0 3)的距离最小的圆的方程

圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,在满足两个条件的园中,求圆心到点p(0 3)的距离最小的圆的方程
被x轴所截得的两段弧之比是3:1,则圆心到x轴的距离等于半径是一半.设圆心是(a,b),则圆的半径是R=2|b|,圆方程是(x-a)²+(y-b)²=4b²,因此圆截y轴的弦长是2,则利用垂径定理,得:R²=1+a²,即:4b²=a²+1,设圆心(a,b)到点(0,3)的距离是d,则d²=a²+(b-3)²=5b²-6b+8,当d最小时,b=3/5,此时a=±√11/5,则圆方程是(x±√11/5)²+(y-3/5)²=36/25

设圆满足①截y轴所得的弦长为2②被x轴分为两段圆弧,弧长比为1:3 设圆满足 截y轴所得弦长为2.被x轴分成两段圆弧,共弧长之比为3:1.圆心到直线L:x-2y=0的距离为5分之根设圆满足 截y轴所得弦长为2.被x轴分成两段圆弧,共弧长之比为3:1.圆心到直线L:x-2y=0的距离为 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,满足条件12 求圆心到直线x-2y=0的距离最小的方程. 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,在所有满足条件1和2的园中 求圆心到直线x-2y=0的距离最小的圆的方程.(1)截y轴所得弦长为2;(2).被x轴分两弧弧比为3:1 圆满足1.截y轴所得弦长为2:2.被x轴分两弧弧比为3:1,在满足两个条件的园中,求圆心到点p(0 3)的距离最小的圆的方程 已知圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,弦长之比为3:1.在满足条件(1)、(2)得已知圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段圆弧,弦长之比为3:1.在 已知圆满足:截y轴所得弦长为2;被x周分成两段圆弧,其弧长之比为3:1;圆心到直线x-2y=0的距离为根号5/5 圆满足截Y轴所得弦长为2 被X轴分成两段圆弧 弧长比3:1 圆心到直线L:X-2Y=0距离为五分之根号五 该园方程 设圆满足:截Y轴所得弦长为2且被X轴分成两段圆弧,其弧长的比3:1,在满足条件的圆中.求圆心到直线X-2Y=0的...设圆满足:截Y轴所得弦长为2且被X轴分成两段圆弧,其弧长的比3:1,在满足条件的圆中. 设圆满足:条件1:截y轴所得弦长为2,条件:2被x轴分成两段圆弧,其弧长的比为3:1,在满足条件1,2的所有...设圆满足:条件1:截y轴所得弦长为2,条件:2被x轴分成两段圆弧,其弧长的比为3:1,在满足条件1,2 设圆满足:⑴截y轴所得弦长为2 ⑵被x轴分为两段圆弧,其弧长的比是3:1 在满足条件⑴,⑵的所有设圆满足:⑴截y轴所得弦长为2⑵被x轴分为两段圆弧,其弧长的比是3:1在满足条件⑴,⑵的所有圆中, 设圆满足:1.截y轴所得弦长为2;2.被x轴分成两段弧的比值为3:1 在满足上述条件的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.要过程和结果的, 高一直线与圆设圆满足1.截Y轴所得的弦长为2 2.被x轴分成的两段弧长之比为3:1在满足1.2.的情况下,求圆心到L:x-2y=0的距离最短的圆的方程 关于求圆的方程问题设圆满足1.截y轴所得的弦长为2.2.被X轴分为两段,其弧长之比为3:1.3.圆心到直线L:X—2y=0的距离为√(5)/5,求圆的方程 设圆满足截Y轴所得弦长为2,被X轴分成两段圆弧其弧长的比为3:1.求圆心到直线X-2Y=0的距离最小的圆的方程 已知圆满足:①截y轴所得弦长为2,②被x轴分成两段圆弧,其弧长比为3:1.在满足条件的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆方程. 设圆满足截Y轴所得弦长为2,被X轴分成两段圆弧其弧长的比为3:1.求圆心到直线X-2Y=0的距离最小的圆的方程具体过程能说明白点吗? 圆已知圆满足:1.截y轴所得弦长为2.2.被x轴分成两段圆弧,其弧长的比为3:13.圆心到直线l:x-2y=0距离最小求圆的方程