在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b²+c²-a²=√3bc且(1+√3)c=2b.(1)求∠C(2)若S△ABC=1+√3/2,求三角形的三边a,b,c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:57:23

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b²+c²-a²=√3bc且(1+√3)c=2b.(1)求∠C(2)若S△ABC=1+√3/2,求三角形的三边a,b,c
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b²+c²-a²=√3bc且(1+√3)c=2b.(1)求∠C
(2)若S△ABC=1+√3/2,求三角形的三边a,b,c

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b²+c²-a²=√3bc且(1+√3)c=2b.(1)求∠C(2)若S△ABC=1+√3/2,求三角形的三边a,b,c
因为a²=b²+c²-2bccosA,而b²+c²-a²=√3bc,则有cosA=根号3/2,A=30°
(1+√3)c=2b,则b/c=(1+根号3)/2=sinB/sinC=sin(π-C-A)/sinC=sin(C+30°)/sinC
则tgC=1,则∠C=45°
因为S△ABC=1/2bcsinA=bc/4=(1+√3)/2,而(1+√3)c=2b,则联解方程有
c=2,b=1+√3,则a=√2

(1)由于b²+c²-a²=√3bc,a²=b²+c²-2bccosA,则cosA=√3/2,角A=30度,则B+C=150度
由于b/sinB=c/sinC,(1+√3)c=2b,所以b/c=sinB/sinC=(1+√3)/2
sinB=sin(150-C)=1/2cosC+√3/2sinC
则sinC=cos...

全部展开

(1)由于b²+c²-a²=√3bc,a²=b²+c²-2bccosA,则cosA=√3/2,角A=30度,则B+C=150度
由于b/sinB=c/sinC,(1+√3)c=2b,所以b/c=sinB/sinC=(1+√3)/2
sinB=sin(150-C)=1/2cosC+√3/2sinC
则sinC=cosC,则角C=45度
(2)S△ABC=1+√3/2=1/2bcsinA=1/4bc
所以bc=4+2√3,由于(1+√3)c=2b
所以c=2,b=1+√3,a=√2

收起

在△ABC中,内角A,B,C所对的边分别为a,b,c.若B=π/4,0 在△ABC中,内角A,B,C所对的边分别为a,b,c,若B=π/4,0 在△ABC中,内角A,B,C所对的边分别为a,b,c,若B=π/4,0 在△ABC中,已知内角A,B,C所对的边分别为a,b,c,acosB+bcosA=csinC则sinA+sinB的最大值为 在三角形ABC中,内角ABC成等差数列,其所对的边分别为abc,且1/2a,b,3c成等比数列 在三角形ABC中,a,b,c分别为内角A,B,C所对的边,若a=2bcosC,则此三角形一定是什么三角形? 高中正弦定理在△ABC中,三个内角A.B.C所对的边分别为a.b.c已知2B=A+C,a+根号2b=2c,求sinC的值 在三角形ABc中,其内角A,B,C所对的边分别为a,b,c;若a=b,sinB=sin(A+派/3),求...在三角形ABc中,其内角A,B,C所对的边分别为a,b,c;若a=b,sinB=sin(A+派/3),求角A的大小; 在△ABC中,内角A,B,C所对的边分别为a,b,c,给出下列结论在△ABC中,内角A,B,C所对的边分别为a,b,c,给出下列结论①若A>B>C,则sinA>sinB>sinC②若sinA|a=cos|b=cosC|c,则△ABC为等边三角形③必存在A.B.C.使tanA+ 在△ABC中,a,b,c分别为其内角A,B,C所对的边,且2acosC=2b-c若a=1,求b+c的取值范围 已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且 在△ABC中,内角A、B、C所对应的边分别a,b,c,若c²=(a-b)²+6,ab怎么求? 在△ABC中,a,b,c分别为三内角ABC所对的边,若B=2A,则b:2a的取值范围是 设△ABC的内角A.B.C所对的边分别 若(3b-C) 在△ABCD 的内角ABC所对的边分别为a,b,c.且bcosC=a-1/2c,则角B= 在△ABC中,内角A,B,C的对边分别为a,b,c,试计算:a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB) 在三角形ABC中,abc分别是内角ABC所对的边,若b²+c²-bc=a²,则内角A 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知tanB=二分之一,tanC=三分之一,且c=1.求a的值