用什么方法能把无限循环小数化成分数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:12:35

用什么方法能把无限循环小数化成分数
用什么方法能把无限循环小数化成分数

用什么方法能把无限循环小数化成分数
当然是用计算机的方便,笔算的方法也有,但是实在是太繁琐了 首先明确一点 无限不循环小数 是不能转化成分数的 那么无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数.其实,循环小数化分数难就难在无限的小数位数.所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”.策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!我们来看两个例子:⑴把0.4747……和0.33……化成分数.等等既然我们讨论到无限这个概念 那么我们就应该明确一点 既然都是 无限循环小数 那么他们在循环节中小数点后 数的个数就没有区别的 统一的认为是无限个 例如:想1:0.4747……×100=47.4747…… 0.4747……×100-0.4747……=47.4747……-0.4747…… (100-1)×0.4747……=47 即99×0.4747…… =47 那么0.4747……=47/99 想2:0.33……×10=3.33…… 0.33……×10-0.33……=3.33…-0.33…… (10-1) ×0.33……=3 即9×0.33……=3 那么0.33……=3/9=1/3 由此可见,纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数.⑵把0.4777……和0.325656……化成分数.想1:0.4777……×10=4.777……① 0.4777……×100=47.77……② 用②-①即得:0.4777……×90=47-4 所以,0.4777……=43/90 想2:0.325656……×100=32.5656……① 0.325656……×10000=3256.56……② 用②-①即得:0.325656……×9900=3256.5656……-32.5656…… 0.325656……×9900=3256-32 所以,0.325656……=3224/9900