log2 1+ log2 2+ … + log2 n >= ⌊n/2」log2 (n/2) 求证明,2是底
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:56:58
log2 1+ log2 2+ … + log2 n >= ⌊n/2」log2 (n/2) 求证明,2是底
log2 1+ log2 2+ … + log2 n >= ⌊n/2」log2 (n/2) 求证明,2是底
log2 1+ log2 2+ … + log2 n >= ⌊n/2」log2 (n/2) 求证明,2是底
2^(log2 1+ log2 2+ … + log2 n) =1*2*……*n = n!
2^ [(n/2)log2 (n/2)] =2^ log2 (n/2)^(n/2) = (n/2)^(n/2)
由于n!>(n/2)^(n/2)
2^(log2 1+ log2 2+ … + log2 n)>2^ (n/2)log2 (n/2)
log2 1+ log2 2+ … + log2 n >(n/2)log2 (n/2)
log2 1+ log2 2+ … + log2 n >= ⌊n/2」log2 (n/2) 求证明,2是底
log2 SQR(7/48)+log2 12 -1/2log2 42
log2 SQR(7/48)+log2 12 -1/2log2 48
|[log2(x)]^2-3log2(x)+1|
(log2)2+log2*log50+1g25值
log2(2X-1)
log2 (x + 3) + log2(x + 2) = 1log2 (x + 3) + log2(x + 2) = 1
化简log2 1/2+log2 2/3+log2 3/4+.+log2 31/32
计算:(1)log2 (4^3*8^5);(2)log2 3+log2 6-log2 9
(log2) ^2 - log5 *log20课本上 等于 (log2)^2 +(1+log2)(1-log2) = 1;(log2)^2 +(1+log2)(1-log2) 是怎么来的?
[log2 1]+[log2 2]+[log2 3]+[log2 4]+[log2 5]+...+[log2 1024]=?[x]表示不超过x的最大整数2为底 答案是8204
log2(log2 16)(以2为底的…)
log2 (2^x-1)·log2 [2^(x+1)-2]
log2 (2^x-1)·log2 [2^(x+1)-2]
log2(x-1)>2定义域log2(x-1)>2 定义域
解方程log2(2-x)=log2(x-1)+1
解2log2^(x-5)=log2^(x-1)+1
2^log2 (3) × log2 (1/8) + 2lg3