已知等腰三角行一个底角的正玄值等于5/13,求这个三角形的顶角的正玄,余玄及正切
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:01:18
已知等腰三角行一个底角的正玄值等于5/13,求这个三角形的顶角的正玄,余玄及正切
已知等腰三角行一个底角的正玄值等于5/13,求这个三角形的顶角的正玄,余玄及正切
已知等腰三角行一个底角的正玄值等于5/13,求这个三角形的顶角的正玄,余玄及正切
底角A 顶角C
sin=120/169
cos=-119/169
tan=-120/119
sinA = 5/13 设顶角为A,底角为B,C
sinB=5/13
cosB=(1-(5/13)^2)^(1/2)=12/13
sin(A/2)=cosB=12/13
cos(A/2)=sinB=5/13
cos(2B)=2(cosB)^2-1=(2*12^2-13^2)/13^2>0
2B90度
sinA=2sin(A/2)cos(A/2)=120/169
cosA=-(1-(sinA)^2)^(1/2)=-7/13
tgA=sinA/cosA=-120/91
cosA = 12/13
sin(C/2) = 12/13
sinC = 2sin(C/2)cos(C/2) = 120/169
sin=120/169
cos=-119/169
tan=-120/119
设顶角为A,底角为B,C
sinB=5/13
cosB=(1-(5/13)^2)^(1/2)=12/13
sin(A/2)=cosB=12/13
cos(A/2)=sinB=5/13
cos(2B)=2(cosB)^2-1=(2*12^2-13^2)/13^2>0
2B<90度
A=180度-2B>90度
sinA=2sin(A/2)cos(A/2)=120/169
cosA=-(1-(sinA)^2)^(1/2)=-119/169
tgA=sinA/cosA=-120/119
底角A 顶角C
sinA = 5/13
cosA = 12/13
sin(C/2) = 12/13
sinC = 2sin(C/2)cos(C/2) = 120/169