如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,请你证明AN=BM 2.∠MFA=60度 3.△DEC为等边三角形 4.DE平行AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:12:26

如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,请你证明AN=BM 2.∠MFA=60度 3.△DEC为等边三角形 4.DE平行AB
如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,请你证明

AN=BM 2.∠MFA=60度 3.△DEC为等边三角形 4.DE平行AB

如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,请你证明AN=BM 2.∠MFA=60度 3.△DEC为等边三角形 4.DE平行AB
证明:∵△ACM,△CBN是等边三角形
∴CM=CA CN=CB
∠MCA=∠NCB=60°
∴∠MCA+∠ACB=∠NCB+∠ACB
即∠MCB=∠ACN
在△BCM和△NCA中
{CB=CN
{∠BCM=∠NCA
{CM=CA
△BCM≌△NCA(SAS)
∴BM=NA
3 ) ∠ACN=∠MCB=120°易证△ACN≡△MCB(SAS)
∴∠CME=∠CAD
再证△CME≡△CAD(ASA)
得CD=CE 因为
∠DCE=60°
∴△DCE为等边三角形
∴∠DEC=∠ECB=60°
∴AB//DE
4):∵△ACM,△CBN是等边三角形
∴AC=CA,AN=BM,∠MCA=∠NCB=60
∴∠MCN=180-∠MCA-∠NCB=180-60-60=60
∴∠ACN=∠MCB=120
∴△ACN≌△MCB
∴∠NAC=∠BMC
∴△ACE≌△MCF
∴CE=CF
∴△CEF为正三角形

证明:
∵等边△ACM、△CBN
∴AC=MC,BC=NC,∠CAM∠AMC=∠ACM=∠BCN=60
∴∠MCN=180-∠ACM-∠BCN=60
∴∠MCN=∠ACM
∵∠ACN=∠ACM+∠MCN=120, ∠MCB=∠BCN+∠MCN=120
∴∠ACN=∠MCB
∴△ACN≌△MCB (SAS)
∴AN=BM,∠CAN=∠...

全部展开

证明:
∵等边△ACM、△CBN
∴AC=MC,BC=NC,∠CAM∠AMC=∠ACM=∠BCN=60
∴∠MCN=180-∠ACM-∠BCN=60
∴∠MCN=∠ACM
∵∠ACN=∠ACM+∠MCN=120, ∠MCB=∠BCN+∠MCN=120
∴∠ACN=∠MCB
∴△ACN≌△MCB (SAS)
∴AN=BM,∠CAN=∠CMB (1)得证
∴△ACD≌△MCE (ASA)
∴CE=CF
∴等边△DEC (3)得证
∴∠CDE=∠ACM=60
∴DE∥AB (4)得证
∵∠AFB=∠AMB+∠MAN=∠AMC+∠CMB+∠MAN=∠AMC+∠CAN+∠MAN=∠AMC+∠CAM=120
∴∠MFA=180-∠AFB=60 (2)得证





数学辅导团解答了你的提问,理解请及时采纳为最佳答案。

收起

如图,点C为线段AB上一点,△ACM,△CBN是等边三角形. 如图,点C为线段AB上一点,△ACM,△CBN 如图,点C为线段AB上一点,△ACM,△CBN是等边三角形.若P.Q分别为AN,BM中点,说明△CPQ为等边三角形 如图,点C为线段AB上一点,△ACM、△CBN是等边三角形.请你证明:(2)∠MFA=60?)△DEC为等边三角形 如图,已知点C为线段AB上一点,△ACM与△CBN是等边三角形.求证:AN=BN、 如图,已知点C为线段AB上一点,△ACM与△CBN是等边三角形.求证:AN=BN. 如图 点C 为线段AB 上的一点 △ACM,△CBN 是等边三角形 求BF=CF+NF如图 点C 为线段AB 上的一点 △ACM,△CBN 是等边三角形 ,AN ,BM 交于点F 连接CF 求证 BF=CF+NF 如图,c为点线段ab上一点,在△acm和三角形cbn中,ac=mc,bc=nc,∠acm=∠bcn.求证:an=mb 如图,已知点C是AB上一点,△ACM,△ACM,都是等边三角形,求证:AN=BM 已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,AN交CM于点E,BM交CN于点F.求证:1、CE=CF2、EF∥AB图 已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)CE=CF (2)EF∥AB 如图,点C为线段AB上一点,△ACM,△CBN是等边三角形.直线AN,MC交于点E ,直线CN,MB交于点F求证:AB平行EF 已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.求证:CE=CF EF∥AB 如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.求证:△CEF为等边三角形. 如图,点C为线段AB上的一点,△ACM、△CBN为等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.△CEF是 如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,请你证明AN=BM 2.∠MFA=60度 3.△DEC为等边三角形 4.DE平行AB 如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN与MC交于点E,直线BM.CN交于点F.请你说明△CEF是等边三角形的理由. 如图,点C为线段AB上一点,△ACM,△CBN是等边三角形.直线AN,MC交于点E ,直线CN,MB交于点F△CEF是什么三为什么