确定常数a,b,c的值,使lim(x-0) (ax-sinx)/[∫ ln﹙1+t³﹚/t dt]=c后面那个积分的下界是x,上界是b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:38:05
确定常数a,b,c的值,使lim(x-0) (ax-sinx)/[∫ ln﹙1+t³﹚/t dt]=c后面那个积分的下界是x,上界是b
确定常数a,b,c的值,使lim(x-0) (ax-sinx)/[∫ ln﹙1+t³﹚/t dt]=c
后面那个积分的下界是x,上界是b
确定常数a,b,c的值,使lim(x-0) (ax-sinx)/[∫ ln﹙1+t³﹚/t dt]=c后面那个积分的下界是x,上界是b
首先x->0时,ax-sinx趋于0,
因此需要
定积分 [下界是x,上界是b] ∫ ln﹙1+t³﹚/t dt 也等于0,
所以x->0时,b也等于0,
再使用洛必达法则对分子分母同时求导,
原极限= lim(x-0) (a-cosx) / [-ln(1+x³)/x] (注意x是下界,求导会有这个负号)
若要极限存在,显然分子分母都要为0,
即a=cos0=1,
而在x趋于0时,ln(1+x³)等价于x³,
即[-ln(1+x³)/x] 等价于 -x³/x= -x²,
所以
原极限= lim(x-0) (a-cosx) / [-ln(1+x³)/x]
=lim(x-0) (1-cosx)/( -x²)
在x趋于0时,1-cosx趋于0.5x²
故原极限= lim(x-0) 0.5x²/( -x²)
= -0.5
即a=1,b=0,c= -0.5
确定常数a,b,c的值,使lim(x-0) (ax-sinx)/[∫ ln﹙1+t³﹚/t dt]=c后面那个积分的下界是x,上界是b
试确定常数a,b是极限lim(x趋于0)[1+acos 2x+bcos 4x]/(x^4)存在,并求出它的值
lim(x→+∞) [(4x^2+3)/(x-1)+ax=b]=2 试确定常数a,b的值不好意思题目应该是lim(x→+∞) [(4x^2+3)/(x-1)+ax+b]=2 试确定常数a,b的值“lim(x→+∞) [(4+a)x^2+(b-a)x+3-b/x-1]=2,故可以得到方程组4+a=0,b-a=2解得a=-4,b=-2
f(x)=lim(x→3) [x-3]/[ax+b+2]=1,确定常数a,b的值
试确定常数a,b,使lim{(3次根号下√(1-x^3 ))-ax-b)=0(x趋于0″ )
确定常数a,b使 lim (√(2x^2+4x-1) - ax - b) = 0 其中x->∞是高数泰勒公式章节的习题,但是没什么解题思路.:)
已知下列极限,确定常数a,b(1)lim[(x^2+1)/(x+1)-ax-b]=0 x->无限(2)lim[3x-sqrt(ax^2+bx+1)]=2 x->正无限求a,b的值(要具体解法)答案是(1)a=1,b=-1(2)a=9.b=-12
1.若lim x趋向无穷 ((4x^2+1)/(x+1)-ax+b)=0,求a,b的值2.已知函数f(x)=x^2-1,x≤1;2x^3+a,x>1.试确定常数a使得lim x趋向1 f(x)存在
大学数学求极限的题设,试确定常数a,b,c的值,使f(x)在x=0处连续./>
确定常数a,b,c的值,使lim(x趋于0) (ax-sinx)/[∫ ln﹙1+t³﹚/t dt]=c ,上边式子后面那个积分下界是x,上界是b;如果a=1那么分子就可以等价于1/6x^3,分母由于ln(1+t^3)/t等价于t^2,又积分一次应该等价
试确定常数a使lim[(1-x^3)^1/3-ax]=0(x趋于无穷大)
lim ax+b/x-1=2 求常数a b 的值 x趋向1
确定常数a,b的值,使函数f(x)= 3sinx x
确定常数a,b使 lim (√(2x^2+4x-1) - ax - b) = 0:到√2x√(1+2/x-1/(2x^2))以后一步我就不懂了,
确定a,b的值,使极限等式lim(n→∞)(√(x^2-x+1)-ax-b)=0成立
试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x^3),其中ο(x^3)是当x→0时试确定常数A、B、C的值,使得e^x(1+Bx+Cx^2)=1+Ax+ο(x^3),其中ο(x^3)是当x→0时高阶无穷小量
(1)已知a,b为常数,lim(x-无穷)ax^2+bx+5/3x+2=5,求a,b的值.(2)已知a,b为常数,lim(x-2,ax+b/x-2=2,求a...(1)已知a,b为常数,lim(x-无穷)ax^2+bx+5/3x+2=5,求a,b的值.(2)已知a,b为常数,lim(x-2,ax+b/x-2=2,求a,b的值.
已知lim x→0(((根号下1+x+x^2) - (1+ax))/x^2)=b,求常数a、b的值