对任意正整数n ,用S(n) 表示满足不定方程1/x+1/y=1/n 的正整数对(x,y) 的个数例如,满足1/x+1/y=1/2 的正整数对有(6,3) ,(4,4) ,(3,6) 三个,则S(2)=3 .求出使得S(n)=2007

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:48:40

对任意正整数n ,用S(n) 表示满足不定方程1/x+1/y=1/n 的正整数对(x,y) 的个数例如,满足1/x+1/y=1/2 的正整数对有(6,3) ,(4,4) ,(3,6) 三个,则S(2)=3 .求出使得S(n)=2007
对任意正整数n ,用S(n) 表示满足不定方程1/x+1/y=1/n 的正整数对(x,y) 的个数例如,满足1/x+1/y=1/2 的正整数对有(6,3) ,(4,4) ,(3,6) 三个,则S(2)=3 .求出使得S(n)=2007 的所有正整数 .

对任意正整数n ,用S(n) 表示满足不定方程1/x+1/y=1/n 的正整数对(x,y) 的个数例如,满足1/x+1/y=1/2 的正整数对有(6,3) ,(4,4) ,(3,6) 三个,则S(2)=3 .求出使得S(n)=2007
1/x+1/y=1/n
得x=n+[(n^2)/(y-n)]
要使x,y为正整数,则必须且只须n^2能被y-n整除.
即y-n是n^2的一个因子(包含1和n^2本身)
所以n^2的每一个因子对应一个y,每一个y又对应一个x,
且解的个数s(n)=2007,所以知道,n^2有且仅有2007个因子.
设n的标准分解为:n=(p1^a1)×(p2^a2)×...×(pn^an)
其中pi是不同的质数,ai是pi的指数.
则n^2=(p1^2a1)×(p2^2a2)×...×(pn^2an)
所以n^2的因子总共有(2a1+1)×(2a2+1)×...×(2an+1)个
由题意,(2a1+1)×(2a2+1)×...×(2an+1)=2007
因为2007仅有四种分解形式,即:
2007=1×2007
2007=3×3×223
2007=9×223
2007=3×669
所以解得:
1、a1=1003
2、a1=1,a2=1,a3=111
3、a1=4,a2=111
4、a1=1,a2=334
于是求得使S(n)=2007 的所有正整数n可以表示成如下四种形式:
1、n=p1^1003
2、n=p1×p2×(p3^111)
3、n=(p1^4)×(p2^111)
4、n=p1×(p2^334)

对任意正整数n ,用S(n) 表示满足不定方程1/x+1/y=1/n 的正整数对(x,y) 的个数例如,满足1/x+1/y=1/2 的正整数对有(6,3) ,(4,4) ,(3,6) 三个,则S(2)=3 .求出使得S(n)=2007 对每个正整数n,用s(n)表示的各位数字之和,那么有?个n使得n+s(n)+s(s(n))=2010 给定正整数k(1≤k≤9),令KKKK(n个)表示各位数字均为k的十进制n位正整数给定正整数k(1≤k≤9),令kkkk(n个)表示各位数字均为k的十进制n位正整数,若对任意正整数n,二次函数F(X)满足F(kkkk(n个 若对任意的正整数n,xn 若对任意的正整数n,xn 用数学归纳法证明:对任意的正整数n,有(3n+1)7^n能被9整除式子应该是(3n+1)7^n-1 其中 7^n表示7的n次方 证明对于任意正整数n,(2+√3)^n必可表示成√s+√s-1的形式. 若数列{an}满足:对任意的n∈N+,只有有限个正整数m使得am 已知数列{an}有a1=1,它的前n项和为Sn,并且对任意正整数n满足a(n+1)=Sn+n+1.(1).用an表示a(n+1)(2).证明:数列{an+1}是等比数列.(这里的=1不是下标.)(3).求an及Sn. 证明:对任意正整数n,不等式ln((n+2)/2) 证明:对任意正整数n,不等式In(n+1) 证明:对任意的正整数n,数1^7+2^7+…+n^7不被n+2整除 证明对任意的正整数n,不等式In(n+1)/n<(n+1)/n^2证明对任意的正整数n,不等式In(n+1)/n 请用数学归纳法证明对任意正整数n有|sin(nx)|=n|sinx| 已知π是无理数,证明:对任意实数k,数π/2+kπ都是无理数1.已知π是无理数,证明:对任意实数k,数π/2+kπ都是无理数2.正整数n小于100,并且满足等式[n/2]+[n/3]+[n/6]=n,其中[x]表示不超过x的最大整数 对任意正整数n,设计一个程序框图求S=1+1/2+1/3+...+1/n的值用程序框图表达的 对任意正整数n,设计一个算法,求s=1+1/2+1/3+…+1/n的值 想一想,如果用n表示一个正整数,a,b表示任意的有理数,那麼(ab)n等于什么?