f(x)在x=0处可导,有F(x)=f(x)(1+|sin x|),则证明F(x)在x=0处可导的充要条件是f(0)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:52:18

f(x)在x=0处可导,有F(x)=f(x)(1+|sin x|),则证明F(x)在x=0处可导的充要条件是f(0)=0
f(x)在x=0处可导,有F(x)=f(x)(1+|sin x|),则证明F(x)在x=0处可导的充要条件是f(0)=0

f(x)在x=0处可导,有F(x)=f(x)(1+|sin x|),则证明F(x)在x=0处可导的充要条件是f(0)=0
F(x)=f(x)(1+|sin x|),F(0) = f(0)
F'(0) = lim (x->0) [F(x) - F(0)] / x
= lim (x->0) [ f(x)*(1+|sinx| ) - f(0) ] / x
= lim (x->0) [ f(x) - f(0) ] / x + lim (x->0) f(x) * |sinx| / x
= f '(0) + lim (x->0) f(x)* |sinx| / x
lim (x->0+)|sinx| / x = 1,lim (x->0-) |sinx| / x = -1
于是 lim (x->0) f(x)* |sinx| / x 存在 lim (x->0) f(x) = 0
f(x)在x=0处可导,必连续,故 lim (x->0) f(x) = f(0) = 0
即 F(x)在x=0处可导的充要条件是f(0)=0.

F(x)=f(x)(1+|sinx|),F(x),f(x)在x=0处可导,求f(0) 函数F(x)满足下列性质 f(a+b)=f(a)f(b) f(0)=1 f(x)在x=0处可导 证明对任意X有 f'(x)=f'(0)f(x) 恒有f(x+y)=f(x)+f(y),若x>0时,f(x) 高等数学f(x+y)=f(x)+f(y)/1-f(x)f(y),求f(x)f(x+y)=f(x)+f(y)/1-f(x)f(y),则f(x)=tan(ax)怎么证明?f(x)在(-∞,+∞)上有定义,且f'(x)=a(a不等于0) 有一个函数f(x),f(x)=f'(x),f(0)=1,证明:f(x)=e^x 设f(x)在x=0处可导,且对任意x.y满足f(x+y)=f(x)f(y),证明f(x)处处可导,且f'(x)=f'(0)f(x) f(x)在R恒有f(x+y)=f(x)+f(y)-1,对于任意的x>0,都有f(x) 如果偶函数f(x)在x∈(-无穷大,0],有f(x)=x+1,则f(x)=______ 数学题f(X)对一切x y都有f(x+y)=f(x)+f(y)f(X)对一切x y都有f(x+y)=f(x)+f(y)且x>0时,f(x) f(x)在x=0处可导且f'(0)=ln2,且对任意的x,y∈R有f(x+y)=f(x)f(y),求f(x) f(x)在(-∞,+∞) 二阶可导,f(x)/x=1,且f''(x)>0,证明f(x)>=x 已知函数f(x)对任意实数x都有f(-x)=f(x),f(x)=-f(x+1),且在[0,1]单调递减,比较f(7/2),f(-1/3),f(7/5)的大小. f(x)在[0,+∞)有连续导数,f''(x)>=k>0,f(0) f(x)在[0,+∞)有连续导数,f'(x)>=k>0,f(0) 设f(x)是定义在(0,+∞)上的单调增函数,且对任意x,y属于(0,+∞)有f(xy)=f(x)+f(y).求证f(x/y)=f(x)+f(y)(1)、求证f(x/y)=f(x)+f(y)(2)、若f(3)=1,解不等式f(x)>f(x-1)+2 f(x)在x=0处可导,有F(x)=f(x)(1+|sin x|),则证明F(x)在x=0处可导的充要条件是f(0)=0 设f(x) g(x)在i 上可导证在f(x)的任意两个零点必有方程f'(x)+g'(x)f(x)=0的实根 设函数f(x)在(-∞,+∞)内有定义,f(0)不等于0,f(xy)=f(x)f(y),证明:f(x)=1