设f(x)=ax,g(x)=x1/3,h(x)=logax,a满足loga(1-a2)>0,那么当x>1时必有 A h(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 11:42:35
设f(x)=ax,g(x)=x1/3,h(x)=logax,a满足loga(1-a2)>0,那么当x>1时必有 A h(x)
设f(x)=ax,g(x)=x1/3,h(x)=logax,a满足loga(1-a2)>0,那么当
x>1时必有 A h(x)
设f(x)=ax,g(x)=x1/3,h(x)=logax,a满足loga(1-a2)>0,那么当x>1时必有 A h(x)
a满足loga(1-a2)>0
说明1-a^2>0
00>h(x)
已知函数f(x)=x^2-ax,g(x)=lnx.设h(x)=f(x)+g(x)有两极值点x1,x2,且0
已知函数f(x)=x^2-ax,g(x)=lnx(I)设h(x)=f(x)+g(x)有两个极值点x1,x2,且x1∈(1/2),试比较h(x1)-h(x2)与3/4-ln2的大小 (II)设r(x)=f(x)+g((1+ax)/2),对于任意a∈(1,2),总存在x0∈[1/2,1],使不等式r(x0)>k(1-a^2)成立,求k的范
设f(x)=ax,g(x)=x1/3,h(x)=logax,a满足loga(1-a2)>0,那么当x>1时必有 A h(x)
设函数f(x)在x1处可导,则h→0 lim f(x1-h)-f(x1)/-h=_______?
设f(x),g(x),h(x)属于F[x].证明[f(x),(g(x),h(x))]=([f(x),(g(x)],[f(x),h(x)])第四题
已知函数f(x)=3^x 且f^-1(18)已知函数f(x)=3^x,f(x)的反函数为h(x),且h(18)=a+2,g(x)=3^ax-4^x1 求a的值2 求g(x)的表达式3 当x属于[-1,1]时,g(x)的值域并判断单调性
设x1、x2(x1≠x2)是函数f(x)=ax^3+bx^2-a^2x(a>0)的两个极值点(1)若x1=-1,x2=2,求函数f(x)的解析式;(2)若|x1|+|x2|=2√2,求b的最大值;(3)设函数g(x)=f’(x)-a(x-x1),x(x1,x2),当x2=a时,求证:|g(x)|≤1/12a(3a+2)
设f(x),g(x),h(x)都是多项式,若 (f(x),g(x))=1,证明(f(x)+g(x)h(x),g(x))=1
设f(x),g(x),h(x)都是多项式,证明::(f(x),g(x))=(f(x)-g(x)h(x),g(x))
设函数f(x)=x的3次方-4x的平方+5x-2,g(x)=x的平方+ax+b,若函数g(x)的零点为1和2,若方程f(x)+g(x)=mx有三个互不相同的实数根0,x1,x2,其中x1<x2,且对任意的x属于[x1,x2],f(x)+g(x)<m(x-1)恒成立,
记min{X1,X2,X3.,Xn}为X1,X2,X3.,Xn,中的最小者,设f(x)=x²+x,g(x)=3x+3若h(x)=min{f(x),g(x)}求h(x)
已知函数f(x)=x^3-3ax+b(a,b∈R) .(2)设b=0,且g(x)=|f(x)|,(|x|≤1),求函数g(x)的最大值h(a)
设二次函数f(x)=ax^2+bx+c(a>b>c),m是方程f(x)=-a的实根,且f(1)=0 (1)试推论f(x)在区间[0,正无穷大)是否为单调函数,并说明理由.(2)设g(x)=f(x)+bx,对于x1,x2∈R,且x1≠x2,若g(x1)=g(x2)=0,求|x1-x2|的取值范围(3)判断
函数f(x)=ax^2-bx+1,设g(x)=2^(x^2-2x)对任意实数x1,总存在x2,使f(x1)=g(x2)成立,求实数a,b满足条件
设函数f,g,h∈R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2,求出f○g,g○f,f○f,f○h,g○h,f○h○g.f○g是f和g的复合关系
已知f(x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h(x)=mf+ng(x),那么称h(x)为f(x)、g(x)在R上生成的一个函数.设f(x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h(x)为f(x)、g(x)在R上生成的一个二次函数.(1
已知二次函数f(x)=ax^2+bx+c若任意x1,x2,且x1这个是标准答案令g(x)=f(x)-[f(x1)+f(x2)]/2g(x1)=[f(x1)-f(x2)]/2g(x2)=[f(x2)-f(x1)]/2g(x1)g(x2)=-[f(x1)-f(x2)]^2/4
设二次函数f(x)=ax^2+bx+c,a>0,c第二问:设函数g(x)=f(x)+bx 的零点为x1 和 x2 求证|x1-x2|>=2