两正数数列{an} {bn}满足:an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列 a1=1 b1=2 a2=3.求{an} {bn}通项公式.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:33:12

两正数数列{an} {bn}满足:an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列 a1=1 b1=2 a2=3.求{an} {bn}通项公式.
两正数数列{an} {bn}满足:an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列 a1=1 b1=2 a2=3.求{an} {bn}通项公式.

两正数数列{an} {bn}满足:an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列 a1=1 b1=2 a2=3.求{an} {bn}通项公式.
①必要性:
设{an}成等差数列,公差为d,∵{an}成等差数列.
bn=(a1+2a2+…+nan)/(1+2+3+…n)=[a1(1+2+...+n)+d(1*2+2*3+...+(n-1)*n)/(1+n...+n)=a1+2(n-1)d/3,
从而bn+1-bn=a1+2nd/3-a1-2(n-1)d/3=2d/3为常数.?
故{bn}是等差数列,公差为 2d/3.
②充分性:
设{bn}是等差数列,公差为d′,则bn=(n-1)d′?
∵bn*(1+2+…+n)=a1+2a2+…+nan ①
bn-1*(1+2+…+n-1)=a1+2a2+…+(n-1)an ②
①-②得:nan=n(n+1)bn/2-n(n-1)(bn-1)/2?
∴an=(n+1)bn/2-(n-1)(bn-1)/2=(n+1)[b1+(n-1)d']/2-(n-1)[b1+(n-2)d']/2=b1+3(n-1)d'/2 ,
从而得an+1-an= 3d′/2为常数,故{an}是等差数列.
综上所述,数列{an}成等差数列的充要条件是数列{bn}也是等差数列.

有个很笨的办法,先找规律a1=1,a2=3 a3=6 a4=10
b1=2 b2=9/2,b3=16/2,b4=25/2
先猜想an=1+(2+n)(n-1)/2 bn=(n+1)平方/2
再用数学归纳法证明一下吧

两正数数列{an} {bn}满足:an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列 a1=1 b1=2 a2=3.求{an} {bn}通项公式. 已知各项均为正数的两个数列an,bn满足a n+1=an+bn/√an²+bn² 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 各项和为正数的数列an和bn满足an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列 求证(根号bn)是等差数列 已知等比数列{an}各项均为正数,数列{bn}满足bn=log2^an,b1+b2+b3=3,b1b2b3=-3,求an 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn. 各项均为正数的数列an bn满足:an+2=2an+1 +an,bn+2=bn+1 +2bn(n属于N+),那么 2014-03-1这是我前一阵提的问题, 两正数数列列{An}、{Bn}满足:an,bn,a(n+1)成等差数列bn,a(n+1),b(n+1)成等比数列a1=1b1=2a2=3求数列{An}、{Bn}的通项公式thanks我只有这点分数了不好意思 已知等比数列{an}各项均为正数,数列{bn}满足bn=log2an,且b1+b2+b3=3,b1b2b3=-3求通项an= 已知等比数列an的各项是不等于1的正数,数列bn满足bn=2log4an已知等比数列an的各项是不等于1的正数,数列bn满足bn=2log4 an ,设a3=8,b5=5,若数列cn=1/bn*b(n+2) ,求数列cn的前n项和 已知数列an满足a1=a,an=an+1+2.定义数bn,bn=1/an n为正数 若4﹤a﹤6,则已知数列an满足a1=a,an=an+1+2.定义数bn,bn=1/an n为正数若4﹤a﹤6,则数列bn最大项的项数为 问道数学题.正数数列{an}和{bn}满足:对任意自然数n,an,bn,a(n+1)成等差数列,bn.a(n+1)成等比数列.证明数列{根号bn}为等差数列 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列设各项均为正数的数列{an}和{bn}满足5^[an(n为下标)],5^[bn(n为下标)] ,5^[a(n+1)(n+1为下标)] 成等比数列,lg[bn(N为下标)],lg[a(n+1)(N+1 在数列{an}中an=an/bn+c,其中abc为正数 高一数学等比数列已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=ln an,b3=18. b6=12,则数列{bn}的前n项和的最大值等于? 已知等比数列an的各项均为不等于1的正数,数列bn满足bn=㏑an,b3=18,b6=12,则数列bn前n项和的最大值 已知等比数列{an}的各项是均不等于一的正数,数列{bn}满足bn=In an,b3=18,b6=12,则数列{bn}的前n项和的最大值等于