高数,急,用比值判别法求敛散性,第六题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:46:51
高数,急,用比值判别法求敛散性,第六题
高数,急,用比值判别法求敛散性,第六题
高数,急,用比值判别法求敛散性,第六题
根据题意:
an = (n!)² / (2n)!
显然:an >0
于是:
a(n+1) / an
[(n+1)!]² ·(2n)!
= --------------------
[2(n+1)]!· (n!)²
(n+1)²
全部展开
根据题意:
an = (n!)² / (2n)!
显然:an >0
于是:
a(n+1) / an
[(n+1)!]² ·(2n)!
= --------------------
[2(n+1)]!· (n!)²
(n+1)²
=---------------------
(2n+1)(2n+2)
n+1
=--------------------- < 1
2(2n+1)
因此,原级数收敛
收起