线性代数超难题!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:38:15
线性代数超难题!
线性代数超难题!
线性代数超难题!
|A^TA+B|=|A^T||E+A^T^{-1}BA^{-1}||A|,由于|A^T||A|>0,而A^T^{-1}BA^{-1}依然为反对称矩阵,令其为C.下面只要证明|E+C|>0.而反对称矩阵的特征值要么为0,要么为成对的纯虚数,从而|E+C|=其所有特征值的乘积,由此可以得出>0.
收录互联网各类作业题目,免费共享学生作业习题
香蕉皮慧海网手机作业共收录了 千万级 学生作业题目
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:38:15
线性代数超难题!
线性代数超难题!
线性代数超难题!
|A^TA+B|=|A^T||E+A^T^{-1}BA^{-1}||A|,由于|A^T||A|>0,而A^T^{-1}BA^{-1}依然为反对称矩阵,令其为C.下面只要证明|E+C|>0.而反对称矩阵的特征值要么为0,要么为成对的纯虚数,从而|E+C|=其所有特征值的乘积,由此可以得出>0.