证明题,设R是二元关系,设S={}存在某个c,使得∈且∈R,证明如果R是等价关系,则S也是等价关系.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:10:50

证明题,设R是二元关系,设S={}存在某个c,使得∈且∈R,证明如果R是等价关系,则S也是等价关系.
证明题,设R是二元关系,设S={}存在某个c,使得∈且∈R,证明如果R是等价关系,则S也是等价关系.

证明题,设R是二元关系,设S={}存在某个c,使得∈且∈R,证明如果R是等价关系,则S也是等价关系.
证明:1)若a属于S(集合),则显然(a,a)属于S,取c=a即可,所以S有自反性
2)若(a,b)属于S,则存在c有(a,c),(c,b)都属于R,由对称性(b,c),(c,a)都属于R,则(b,a)属于S,S有对称性
3)若(a,b),(b,c)属于S,则存在d使得(b,d),(d,c)都属于R,根据R的传递性(a,d)属于R,又(d,c)属于S,所以(a,c)属于S,即S有传递性
因此,S是一个等价关系

证明题,设R是二元关系,设S={}存在某个c,使得∈且∈R,证明如果R是等价关系,则S也是等价关系. 离散数学证明题设R是一个二元关系,设S={ |存在某个C,使∈R且∈R},证明R是一个等价关系,则S也是一个等价关系. 离散数学关于等价关系的题设R是一个二元关系,设S={|对于某一c,有∈R,且∈R},证明:若R是一个等价关系,则S也是一个等价关系. 设R.S及T是集合A上的二元关系,证明(RºS)ºT=Rº(SºT) 设R是集合A上的二元关系,则s(R)= ,t(R)= (离散数学) 离散数学题,设R是A上的二元关系,定义S={(a,b)|∃ c∈A,(a,c)∈R,(c,b)∈R},证明设R是A上的二元关系,定义S={(a,b)|∃ c∈A,(a,c)∈R,(c,b)∈R},证明:若R是A上的等价关系,则S也是等价关系,且S=R给连接 设R和S是A上的二元关系 证明1,r(R∪S)=r(R)∪r(S)2,s(R∪S)=s(R)∪s(S)3,t(R)∪t(S)⊆t(R∪S) 设R是集合A={a,b,c,d}上的二元关系,R={,,,}求r(R),s(R),t(R) 设A={1,2,3},给定A上二元关系R={,,},求r(R),s(R)和t(R). 离散题:设A={1234},R为A*A上的二元关系,对存在属于AXA,定义R推出a+b=c+d(1)证明R是A*A上的等价关系(2)求出R导出的划分 专业的进,希望尽快. 设A是正整数集合,在AXA上定义二元关系R如下: 当且仅当 .证明:关系R满足自反性、对称性、传递性设A是正整数集合,在AXA上定义二元关系R如下: 属于R.。证明:当且仅当xv=yu ,关系R满足自 1 设集合 A={a ,b ,c} 上的二元关系R= { ,,,} ,S={ ,} ,T= { ,,,} ,判断 R,S,T是否为 A上自反的、对称的和传递的关系.并说明理由.2 设集合 A= {a,b,c,d} ,R,S是 A上的二元关系,且R= {,,,,,,,}S= {,,,,,,,,}试判断R 证明S是A上的等价关系设R是A上的自反且可传递的二元关系,S是A上的二元关系当且仅当(a,b)和(b,a)都属于R时,才有(a,b)∈S,证明S是A上的等价关系 6.设集合A = {a,b,c,d},R,S是A上的二元关系,且6.设集合A = {a,b,c,d},R,S是A上的二元关系,且R = {,,,,,,,}S = {,,,,,,,,}试判断R和S是否为A上的等价关系,并说明理由. 离散数学证明等价关系设A为正整数集,在A上定义二元关系R:属于R当且仅当xv=yu,证明R是一个等价关系, 近世代数一题求解设A={1,2,3,4,5},在2^A中定义二元关系~:T[S]=[T],证明~是等价关系,并写出等价类和商集2^A/~ 设A={1,2,3},在P(A)上规定二元关系如下:R={|s,t∈p(A)∧(|s|=|t|)}证明:R是P(A)上的等价关系,并写出商集P(A)/R.上完课不太懂 不会做 求完整过程 谢谢 设A是正整数集合,在AxA上定义二元关系R如下:属于R当且仅当xv=yu.证明:关系R满足自反性、对称性、传递性