[sin(540-x)/tan(900-x)]*[1/tan(450-x)*tan(810-x)]*[cos(360-x)/sin(-x)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:30:10

[sin(540-x)/tan(900-x)]*[1/tan(450-x)*tan(810-x)]*[cos(360-x)/sin(-x)]
[sin(540-x)/tan(900-x)]*[1/tan(450-x)*tan(810-x)]*[cos(360-x)/sin(-x)]

[sin(540-x)/tan(900-x)]*[1/tan(450-x)*tan(810-x)]*[cos(360-x)/sin(-x)]
sin(540-x)cos(360-x) / tan(900-x)tan(450-x)tan(810-x)sin(-x)
= sin(180-x)cos(-x) / tan(180-x)tan(90-x)tan(90-x)sin(-x)
= - sin(x)cos(x)tan(x)tan(x)cos(180-x) / sin(180-x)sin(x)
= cos^2(x)tan^2(x) / sin(x)
= sinx

[sin(540-x)/tan(900-x)]*[1/tan(450-x)*tan(810-x)]*[cos(360-x)/sin(-x)]
=sin(540-x)cos(360-x) / tan(900-x)tan(450-x)tan(810-x)sin(-x)
= sin(180-x)cos(-x) / tan(180-x)tan(90-x)tan(90-x)sin(-x)
= - sin(x)cos(x)tan(x)tan(x)cos(180-x) / sin(180-x)sin(x)
= cos^2(x)tan^2(x) / sin(x)
= sinx

原式=(sin-x/tan-x)*tanx*cotx*(cosx/sin-x)
=cosx*1*(-tanx)
=sinx
答案是SINX
我的过程比较快