求非齐次线性方程组的通解x1 2x2-3x3 4x4=0,2x1-3x2 x3=0,x1 9x2-10x3 12x4=11
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:27:19
求非齐次线性方程组的通解x1 2x2-3x3 4x4=0,2x1-3x2 x3=0,x1 9x2-10x3 12x4=11
求非齐次线性方程组的通解x1 2x2-3x3 4x4=0,2x1-3x2 x3=0,x1 9x2-10x3 12x4=11
求非齐次线性方程组的通解x1 2x2-3x3 4x4=0,2x1-3x2 x3=0,x1 9x2-10x3 12x4=11
设 x1- x2 = y,原方程组化为:
y - x3 + x4 = 0 ----(1)
y + x3 - 3x4 = 1 ----(2)
2y -4x3 +6x4 =-1 ----(3)
由(1)得:y = x3-x4,代入(2)(3)得:
2*x3 - 4*x4 = 1 ----(4)
2*x3 - 4*x4 = 1 ----(5)
由此可以看出,4元方程组只有两个约束条件:
x1- x2 - x3 + x4 = 0 ----(6)
2*x3 - 4*x4 = 1 ----(7)
以x4,和x2为自由变量,得到:
x3 =2*x4 +1/2;
x1 = x2+x4 +1/2;
因此,方程组通解为:
(x2+x4 +1/2, x2, 2*x4+1/2, x4)