如图,线段AB、DC分别表示甲、乙两建筑物的高.从B处测得D点的仰角为60°,在A处测得D点的仰角为30º.已知甲建筑物的高AB=36m 1.求乙建筑的高DC2求甲乙两建筑之间距离BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:45:05
如图,线段AB、DC分别表示甲、乙两建筑物的高.从B处测得D点的仰角为60°,在A处测得D点的仰角为30º.已知甲建筑物的高AB=36m 1.求乙建筑的高DC2求甲乙两建筑之间距离BC
如图,线段AB、DC分别表示甲、乙两建筑物的高.从B处测得D点的仰角为60°,在A处测得D点的仰角为30º.已知甲建筑物的高AB=36m 1.求乙建筑的高DC
2求甲乙两建筑之间距离BC
如图,线段AB、DC分别表示甲、乙两建筑物的高.从B处测得D点的仰角为60°,在A处测得D点的仰角为30º.已知甲建筑物的高AB=36m 1.求乙建筑的高DC2求甲乙两建筑之间距离BC
(1)过点A作AE⊥CD于点E.
根据题意,得∠DBC=∠α=60°,∠DAE=∠β=30°,AE=BC,EC=AB=36.
设DE=x,则DC=DE EC=x 36.
在Rt△AED中,tan∠DAE=tan30°= DEAE,
∴AE= 根号3x,∴BC=AE=根号 3x.
在Rt△DCB中,tan∠DBC=tan60°= DCBC,
∴ 根号3= x 36/根号3x,
∴3x=x 36,
x=18,
∴DC=54(米).
(2)∵BC=AE= 根号3x,x=18,
∴BC= 根号3×18=18×1.732≈31.18(米).
如图,线段AB、DC分别表示甲、乙两建筑物的高.从B处测得D点的仰角为60°,在A处测得D点的仰角为30º.已知甲建筑物的高AB=36m 1.求乙建筑的高DC2求甲乙两建筑之间距离BC
如图,线段AB,DC分别表示甲乙两建筑物的高,AB垂直BC,DC垂直BC,从点B测得D点的仰角α为60度,从A点测得仰角β为30度,已知甲建筑高位36米,1.求乙建筑的高DC2求甲乙两建筑之间距离BC.
15.如图,线段AB、DC分别表示甲、乙两建筑物的高.AB⊥BC,DC⊥BC,从B点测得点D的仰角为 ,从A点测得点D
线段AB,DC分别表示甲乙两建筑物的高AB⊥BCDC⊥BC从B点测得D点的仰角α为60°,从A点测得D的仰角β为30°,已知甲建筑物高AB=36米,1求乙建筑物的高DC 2求甲,乙两建筑物之间的距离BC
如图,过线段AB两端点分别作MB⊥AB,NA⊥AB,垂足分别为点B,点A;点D是射线AN上的一点,点E是线段AB上的一动点,联结DE,过点D作DC⊥DE,与射线BM交于点C,联结CE:(1)求证:DE/DC=AD/AB(2)若已知AD=4,AB=8,请
反方向延伸线段AB,如图,分别画出线段AB的延长线和反向延长线两条线段.一个是延长线,一个反向延长.求图.
如图,在等腰三角形△ABC中,AB=AC,分别过B,C作两腰的平行线,经过点A的两平行线分交于点D,E连接DC BE DC与AB边交于点M,BE与AC边交于点N.若DE平行CB,写出图中所有与AM相等的线段
如图在平面直角坐标系内,线段AB两端点AB分别在x轴y轴上滑动,AB=8,求线段中点M轨迹
如图,△ABC是等边三角形,点D,F分别在线段BC,AB上,EF∥BC,EF=BF=DC,求证:△AED是等边三角形
如图,以△ABC德AB、AC边分别向外作正方形ADEB、ACHF,连接DC、BF线段CD与BF有什么位置关系说明理由.
如图,已知AB⊥BC,DC⊥BC,垂足分别为B、C,点P为线段BC上一点,AP⊥PD,AB=8,DC=6,BC=14,求BP的长
如图四边形ABCD中,AB⊥BC,DC⊥BC垂足分别为B,C,当AB=4,DC=1,BC=4时,在线段BC上是否存在点P,使得AP如图四边形ABCD中,AB⊥BC,DC⊥BC垂足分别为B,当AB=4,DC=1,BC=4时,在线段BC上是否存在点P,使得AP⊥P
如图,点c1 c2在线段ab上,图中共有几条线段?将它们分别表示出来如果在线段ab上有n个点,那么图中共有多少条线段?
3道几何证明题``⒈已知,如图,点O在线段AD上,AO=AB,DO=DC,且OB⊥OC.求证:AB‖DC.⒉已知:如图,点E.F在线段BD上,AD=BC,DF=BE,AF=CE.求证:AF‖EC.⒊已知:如图,AB‖DC,AB=DC,O是DB上一点,过点O的直线分别交DA和BC的
如图矩形ABCD的边AB上有一点P,且AD=5/3,BP=4/5,以点P为直角顶点的直角三角形两条直角边分别交线段DC线段BC于点E,F,连接EF,PF/EP=?
线段AB,DC分别表示甲乙两建筑物的高AB⊥BCDC⊥BC从B点测得D点的仰角为60°,从A点测得D的仰角B为30°,已甲建筑物高AE=36米 (1)求乙建筑物的高DC(2)求甲乙两建筑物间的距离CE
已知,如图,AD是圆心O的直径,AB,AC是圆心的弦,弧BD等于弧DC,OE,OF分别表示AB,AC的弦心距
如图,C是线段AB的中点,用等式表示出线段AC与线段AB,线段AB与线段AC之间的数量关系