离散随机变量里 的方差 二项分布 公式 为什么我的推导错误 高中 初中 求解为什么公式是 D(X)=np(1-p)我推导出来的却是 D(X)=np(1-np)期望E(X)=np就不用说了 E(X^2) 和E(X) 一样,因为1的平方是1,0的平
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:48:40
离散随机变量里 的方差 二项分布 公式 为什么我的推导错误 高中 初中 求解为什么公式是 D(X)=np(1-p)我推导出来的却是 D(X)=np(1-np)期望E(X)=np就不用说了 E(X^2) 和E(X) 一样,因为1的平方是1,0的平
离散随机变量里 的方差 二项分布 公式 为什么我的推导错误 高中 初中 求解
为什么公式是 D(X)=np(1-p)
我推导出来的却是 D(X)=np(1-np)
期望E(X)=np就不用说了
E(X^2) 和E(X) 一样,因为1的平方是1,0的平分是0
那么D(X) = E(X^2) - ( E(X) )^2 =np-n*n*p*p=np(1-np)
离散随机变量里 的方差 二项分布 公式 为什么我的推导错误 高中 初中 求解为什么公式是 D(X)=np(1-p)我推导出来的却是 D(X)=np(1-np)期望E(X)=np就不用说了 E(X^2) 和E(X) 一样,因为1的平方是1,0的平
Dξ=∑(ξ-Eξ)^2*Pξ
=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ
=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)
=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ
因为∑Pξ=1而且Eξ=∑ξ*Pξ
所以Dξ=∑ξ^2*Pξ-Eξ^2
而∑ξ^2*Pξ,表示E(ξ^2)
所以Dξ =E(ξ^2)-Eξ^2
下面计算几何分布的学期望,
Eξ=∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p
Eξ=p+∑{ξ=2,∞}ξ*(1-p)^(ξ-1)*p ①
当然
(1-p)*Eξ=∑{ξ=1,∞}ξ*(1-p)^ξ*p
(1-p)*Eξ=∑{ξ=2,∞}(ξ-1)*(1-p)^(ξ-1)*p ②
①-②得
p*Eξ=p+∑{ξ=2,∞}(1-p)^(ξ-1)*p
所以
Eξ=1+∑{ξ=2,∞}(1-p)^(ξ-1)
=∑{ξ=1,∞}(1-p)^(ξ-1)
=lim{x→∞}[1-(1-p)^x]/p
=1/p
若要计算方差,可以根据公式Dξ =E(ξ^2)-Eξ^2计算,
其中E(ξ^2)的计算过程如下:
E(ξ^2)=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p
E(ξ^2)-Eξ=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p -∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p
E(ξ^2)-Eξ=∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p
E(ξ^2)=1/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ①
(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^ξ*p
(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=2,∞}(ξ-1)*(ξ-2)*(1-p)^(ξ-1)*p ②
由①得
E(ξ^2)=1/p+∑{ξ=2,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ③
③-②得
p*E(ξ^2)=1+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)*p
E(ξ^2)=1/p+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1) ④
(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=2,∞}(ξ-1)*(1-p)^ξ
(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=3,∞}(ξ-2)*(1-p)^(ξ-1) ⑤
由④得
E(ξ^2)=1/p+2*(1-p)+2*∑{ξ=3,∞}(ξ-1)*(1-p)^(ξ-1) ⑥
⑥-⑤得.
p*E(ξ^2)=1+2*(1-p)+2*∑{ξ=3,∞}(1-p)^(ξ-1).
p*E(ξ^2)=1+2*(1-p)+2*lim{x→∞}(1-p)^2*[1-(1-p)^x]/p.
p*E(ξ^2)=1+2*(1-p)+2*(1-p)^2/p.
E(ξ^2)=1/p+2*(1-p)/p+2*(1-p)^2/p/p
=1/p+2*(1-p)/p/p
=(2-p)/p/p
若求方差,根据公式Dξ =E(ξ^2)-Eξ^2得,.
Dξ =(2-p)/p/p-1/p/p
=(1-p)/p^2
为什么“ E(X^2) 和E(X) 一样,因为1的平方是1,0的平分是0”呢?你意思是X只可以取0或1?那按照你这么说EX=np就必然小于1了,因为数学期望即平均值,既然X取值都小于1那平均值当然也小于1。但这样显然是错的。我取n足够大,即可。对,补充下X只取0 1
np 可以大于等于1的
进行了N次,而不是1次进行了N次那么X取值范围就为[0,N]而非0或1。
全部展开
为什么“ E(X^2) 和E(X) 一样,因为1的平方是1,0的平分是0”呢?你意思是X只可以取0或1?那按照你这么说EX=np就必然小于1了,因为数学期望即平均值,既然X取值都小于1那平均值当然也小于1。但这样显然是错的。我取n足够大,即可。
收起