圆锥曲线问题 设F1,F2分别为椭圆C:(a>b>0)的左,右焦点,过F2的直线l与椭圆C相交于A,B两点为什么答案的-y1=2y2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:43:53
圆锥曲线问题 设F1,F2分别为椭圆C:(a>b>0)的左,右焦点,过F2的直线l与椭圆C相交于A,B两点为什么答案的-y1=2y2
圆锥曲线问题 设F1,F2分别为椭圆C:(a>b>0)的左,右焦点,过F2的直线l与椭圆C相交于A,B两点
为什么答案的-y1=2y2
圆锥曲线问题 设F1,F2分别为椭圆C:(a>b>0)的左,右焦点,过F2的直线l与椭圆C相交于A,B两点为什么答案的-y1=2y2
你这样想:两个直角三角形,一个角为60,且相似,斜边之比为1:2,那高之比也为1:2,因为分布在x轴两边,就有一个负号
圆锥曲线问题 设F1,F2分别为椭圆C:(a>b>0)的左,右焦点,过F2的直线l与椭圆C相交于A,B两点为什么答案的-y1=2y2
圆锥曲线面积问题3已知椭圆X方/3+Y方/2=1的左右焦点分别为F1,F2,过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC垂直于BD,求四边形ABCD的面积S的最小值
1.设F1,F2分别为椭圆的左,右两个焦点. 若椭圆C上的点到F1,F2两点的距离之和等于4,写出椭圆C的方程和焦点坐1.设F1,F2分别为椭圆的左,右两个焦点.若椭圆C上的点到F1,F2两点的距离之和等于4,写出
高二数学选修2-1圆锥曲线的应用在直角坐标系xOy中,设椭圆C:(x2/a2)+(y2/b2)=1(a>b>0)的左右两个焦点分别为F1、F2,过右焦点F2且与X轴垂直的直线L与椭圆C相交,其中一个交点为M(√2
圆锥曲线数学题从哪儿解答设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,过F2的直线l交椭圆与A,B,其倾角为60度,F1到l距离为2√3,(1)求C焦距(2)若向量AF2=向量2(F2B),求椭圆方程
圆锥曲线的问题.较难哦.设椭圆x^2/a^2+y^2/b^2=1(a〉b〉0)的两个焦点为F1.F2,以F1F2为直径的圆与椭圆交于A.B.C.D四点,若连线上述6点可构成正6边形.则该椭圆的离心率等于?
关于高中数学圆锥曲线中椭圆的问题已知F1,F2为椭圆x^2+y^2/2=1的两个焦点,AB是过焦点F1的一条动弦 求三角形ABF2面积的最大值椭圆a=√2,b=1,c=1设A点坐标(Xa,Ya),B点坐标(Xb,Yb)三角形ABF2面积 = c*
圆锥曲线题如图,一直椭圆x2/a2+y2/b2=1的左右焦点为f1,f2,点p为椭圆上动点,弦PA,PB分别过点f1.f2,设PF1向量=β1 F1A向量,PF2向量=β2 F2B 求证;β1+β2为定值
设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0
设F1,F2分别为椭圆E:x^2+y^2/b^2=1(0
数学圆锥曲线 直线与椭圆 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1、F2,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,设|AM|=e|AB|,则该圆的离心率e为
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1的左右焦点,过F2的直线与椭圆C相交于AB两点设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F2的直线L与椭圆C相交于A、B两点,直线L的倾斜角为60°,F1到直
设F1、F2分别为椭圆x2/a2+y2/b2=1的左右焦点,若在椭圆c上存在P使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是
高中圆锥曲线练习6.设椭圆(x²/a²)+(y²/b²)=1(a>b>0)的离心率为e=√2/2(1.)椭圆的左右焦点分别为F1、F2,A是椭圆上的一点,且A到此两焦点的距离之和为4,求椭圆的方程.(2.
_______圆锥曲线与方程________已知三点P(5,2)、F1(-6,0)、F2(6,0).(Ⅰ)求以F1、F2为焦点且过点P的椭圆的标准方程;(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且
设F1,F2分别为椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左,右焦点,过F2的直线L与椭圆C相交于A,B两点,直线L百度复制的自重 设F1,F2分别为椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左,右焦点,过F2的直线L与椭圆C相交
设F1,F2分别为椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左,右焦点,过F2的直线L与椭圆C相交于A,B两点,直...设F1,F2分别为椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的左,右焦点,过F2的直线L与椭圆C相交于A,B两点,直线L的顷斜
(高中数学)椭圆方程问题已知椭圆C:x^2/a^2+y^2/b^2=1的左右焦点分别为F1,F2,椭圆的离心率为√2/2,椭圆上的点与F1,F2所形成的三角形最大面积为1. 求椭圆C的方程