证明设f:X→Y,g:Y→X,若对任意x属于X,必有g[f(x)]=x,则f是单射,g是满射
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 22:41:26
证明设f:X→Y,g:Y→X,若对任意x属于X,必有g[f(x)]=x,则f是单射,g是满射
证明设f:X→Y,g:Y→X,若对任意x属于X,必有g[f(x)]=x,则f是单射,g是满射
证明设f:X→Y,g:Y→X,若对任意x属于X,必有g[f(x)]=x,则f是单射,g是满射
映射f:X→Y的定义是:对任意的x属于X,在Y中有唯一的y使得y=f(x).下面通过反证法,假设f不是单射,g不是满射,可以推出与定义矛盾.先来看f,由于f不是单射,所以存在x1,x2属于X,使得虽然x1≠x2,但是有y0=f(x1)=f(x2)属于Y,这样g[f(x1)]=g[f(x2)]=g(y0)=x1=x2,这样Y中的一个元素y0在映射g下的像不是唯一的,与映射的定义矛盾.再来看g,由于g不是满射,所以存在x0属于X,使得x0在映射g下没有原像,即不存在y0属于Y,使得g(y0)=x0=g[f(x0)],也就是不存在y0使得f(x0)=y0,这样X中的一个元素x0在映射f下不存在像,与映射的定义矛盾.这两个矛盾也就说明两个假设都不成立,即f一定是单射,g一定是满射.
证明设f:X→Y,g:Y→X,若对任意x属于X,必有g[f(x)]=x,则f是单射,g是满射
复合函数结合律的证明,有疑问书上这样写的:定理2 设f:X→Y,g:Y→Z,h:Z→D,则hο(gοf)=(hοg)οf证明 对任意x∈dom(f),有hο(gοf)(x)=h((gοf)(x))=h(g(f(x)) =(hοg)(f(x))=(hοg)οf(x) 我觉得h(g(f(x)) =(hοg)(f(x))这
1.已知f(x)是奇函数,g(x)为偶函数.且f(x)-g(x)=1/(x+1)求f(x) g(x)2.设函数f(x)对任意X .Y都有f(x+y)=f(x)+f(y)且X>0时f(x)<0.f(1)=-1(1)求证f(x)是奇函数(2)判断f(x)的单调性并证明(3)当X在【-3,3】是f(x)
设f(x)在x=0处可导,且对任意x.y满足f(x+y)=f(x)f(y),证明f(x)处处可导,且f'(x)=f'(0)f(x)
2、设函数f(x)在(-3,3)上是奇函数,且对任意x,y都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2 1)求f(2)的值 2)判断f(x)的单调性并证明 过程3)若函数g(x)=f(x-1)+f(3-2x).求
导数和微分设对任意x和y,函数f(x)满足等式f(x+y)=f(x)f(y)且f'(0)=1.证明:f'(x)=f(x)
已知函数f(x)=3x^2+a,g(x)=2ax+1.(x属于R)(1)证明:方程f(x)=g(x)恒有两个不相等的实数根.(2)若函数f(x)在(0,2)上无零点,试探究函数y=:|g(x)|在(0,2)上的单调性.(3)设F(x)=f(x)-g(x),若对任意的x属于(0,1),恒有-1
设Fx,y)=f(x),f(x)在x0处连续,证明:对任意y0∈R,F(x,y)在(x0,y0)处连续
已知函数f(x),g(x)在R上有定义,对任意的x,y属于R有f(x-y)=f(x)g(y)-g(x)f(y)且f(1)不等于0,求f(x)为奇函若f(1)=f(2)求g(1)+g(-1)的值2.设函数f(x)=-|x-1|+|x-2|,若不等式|a+b|+|a-b|>=|a|f(x)(a不等于0,ab属于R)求实数x的
关于数学分析的证明题设函数f(x,y),g(x,y)在有界闭区域D上有连续偏导数,且f(x,y)=g(x,y),对任意A(x,y)∈ ∂D,求证:存在X0∈D^0,使得▽f(X0)=▽g(X0)
证明题,设函数f(x)对任意x,y属于R设函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x大于0时,f(x)小于0 1:求证f(x)是奇函数.2:判断f(x)在R上的单调性
f(x)定义在R上,对任意x y都有f(x+y)=f(x)+f(y),若f(x)在x=0处连续,证明f(x)对一切x均连续.
设函数f(x)的定义域为R,当x1且对任意实数x,y有f(x+y)=f(x)f(y)求f(0)判断并证明f(x)的单调性
若对任意正实数x,y,总有f(xy)=f(x)+f(y),证明:f(1/x)=-f(x);f(x/y)=f(x)-f(y)
设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设函数f(x)对任意实数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)
设函数f(x)对任意实数x,y都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),且x>0时,f(x)