设f:A→B,g:B→C,证明:若g °f是满射,则g是满射.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:51:17

设f:A→B,g:B→C,证明:若g °f是满射,则g是满射.
设f:A→B,g:B→C,证明:若g °f是满射,则g是满射.

设f:A→B,g:B→C,证明:若g °f是满射,则g是满射.
g*f是满射就是说,对任意的z属于C,存在x属于A,使得(g*f)x=g[f(x)]=z,由于f(x)=y属于B,因此有对任意的z属于C,存在y属于B使得g(y)=z,也就是g是满射.

设f:A→B,g:B→C,证明:若g °f是满射,则g是满射. .设f:A→B,g:B→C是两个函数,证明:若f⊙g是单射且f是满射,则g是单射.(7分) 设f:A→B,g:B→C是两个函数,证明:若f⊙g是单射且f是满射,则g是单射.(7分) 设f :A→B,g :B→C是映射,又令h =g°f .证明:如果h是满射,那么g也是满射. 设f:A→B,g:B→C若f°g也是满射;则g是满射.举例说明f不一定是满射 设f:A→B,g:BA,f•g=IA (此处A为下角标),证明:f是单射,g是满射 设f(x)与g(x)均在(a,b)连续,且f(a)>g(a),f(b)<g(b),证明在(a,b内至少存在一点c使f(c)=g(x) 设f是A到B的函数,g是B到C的函数,若f复合g是双射,证明f为单射,g为满射 线性代数习题1、证明若f(x)、g(x)为多项式,A、B是n阶行列式,则f(A)g(A)=g(A)f(A);当AB不等于BA时,f(A)g(A)不等于g(A)f(A).2、设矩阵Q=[A B,C D〕且A可逆,证明:det(Q)=|A||D-CA(逆)B|第一题第二问是f(A)g(B)不等于 设函数f(x),g(x)在[a,b]上连续埋在(a,b)上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b)证明:(1)存在α∈(a,b)使得f(α)=g(α)(2)存在c∈(a,b)使得f(c)=g(c) 问一个简单的离散数学问题设 f:A→B,g:B→C, 若f·g是单射,则f是单射但g不一定是单射写出主要思路就可以了 谢谢了 在线= 设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b)证明(1)存在t∈(a,b)使得f(t)=g(t) (2) 存在c属于(a,b)使得f''(c)=g''(c) 高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)使f(ζ)-f(a)/g(b)-g(ζ)=f’(ζ)/g'(ζ). 微分中值定理证明题设f(x),g(x)在[a,b]上可导,并且g’(x) ≠0,证明存在c ∈(a,b)使得 (f(a)-f(c))/(g(c)-g(b))=(f' (c))/(g' (c)),我知道应该是构造函数,但不知道如何构造,请高手指教,只需要你点拨一下当然 设f(x),g(x),在[a,b]上连续,在(a,b)上可导,且f(x)g(x)的导数相等,证明是否存在常数C,使得f(x)=g(x)+C 高数证明题:设f(x)及g(x)在闭区间ab上连续,且f(x)≥g(x),证明:若∫(a,b)f(x)dx=∫(a,b)g(x)dx,则在闭区间ab上f(x)≡g(c) 两道高数题 极限和连续函数⒈设lim(x→x0):f(x)=a>0,lim(x→x0):g(x)=b,证明:lim(x→x0):f(x)^g(x)=a^b⒉设0 不动点的证明 设f(x)在上=[a,b]连续,且f(D)=[a,b],证明存在使得g=f(g)