求极限(1/n^2)/(e^(1/n)-1-1/n) n趋向于无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 22:44:35
求极限(1/n^2)/(e^(1/n)-1-1/n) n趋向于无穷
求极限(1/n^2)/(e^(1/n)-1-1/n) n趋向于无穷
求极限(1/n^2)/(e^(1/n)-1-1/n) n趋向于无穷
n→∞ 也就等价于(1/n)→0 ,所以可以用t=1/n来替换,这样可以很明显的看出分式上下都是无穷小,再用洛必达法则就可以得出答案了.
过程是这样的,原式=lim(t→0) (t^2)/(e^t-1-t)=lim(t→0) (2t)/(e^t-1)=lim 2/(e^t)=2/1=2
答案是2.
当x趋于正无穷时,
lim(1/x^2)/(e^(1/x)-1-1/x)
=lim(-1/2x^3)/(e^(1/x)*(-1/x^2)+1/x^2)
=(-1/2)lim(1/x)/(1-e^(1/x))
=(-1/2)lim(-1/x^2)/e^(1/x)*(1/x^2)
=1/2
所以:lim(1/n^2)/(e^(1/n)-1-1/n)=1/...
全部展开
当x趋于正无穷时,
lim(1/x^2)/(e^(1/x)-1-1/x)
=lim(-1/2x^3)/(e^(1/x)*(-1/x^2)+1/x^2)
=(-1/2)lim(1/x)/(1-e^(1/x))
=(-1/2)lim(-1/x^2)/e^(1/x)*(1/x^2)
=1/2
所以:lim(1/n^2)/(e^(1/n)-1-1/n)=1/2 n趋向于无穷
收起
求极限 lim(n->∞) (n!/n^e)^1/n
求极限(1/n^2)/(e^(1/n)-1-1/n) n趋向于无穷
求极限lim n(e^2 –(1+1/n))2^n (n->无穷大)
求极限 lim n[ e^2- (1+1/n)^2n] n->无穷
(e^n)-1/(e^2n)-1,n倾向无穷.求极限
求极限~lim n[e-(1+1/n)^n] n->无穷lim n[e-(1+1/n)^n] n->无穷
求极限:limn[e^2-(1+1/n)^n] n—>无穷大
(2+1/n)^n求极限
求极限(sin^2)n/n+1
求n/2(n+1)的极限
用概率论与数理统计方法,求n趋近于无穷时,(1+n+n^2/2!+...+n^n/n!)e^(-n)的极限
求极限的值,答案看不懂.lim(n->∞)n[e^2-(1+1/n)^2n]
求极限[(n^2+n)^1/2]-n
求极限n~∞,lim(n+1)/2n
求极限Lim((n-x)/(n+2))^(n+1)
lim (1+2/n)^n+4 n-->无穷大 求极限
求极限〔(n+1)/(n-2)〕^n
用级数求(n/2n+1)^n的极限