如图1,已知抛物线c1:Y=a(x+2)²-5的顶点为P,与x轴相交A、B两点(点A在点B的左边),点B的横坐标是1如图2,点Q是x轴正半轴上的一点,将抛物线c1绕点Q旋转180°后得到抛物线C4.将抛物线C4的顶点为N

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:45:01

如图1,已知抛物线c1:Y=a(x+2)²-5的顶点为P,与x轴相交A、B两点(点A在点B的左边),点B的横坐标是1如图2,点Q是x轴正半轴上的一点,将抛物线c1绕点Q旋转180°后得到抛物线C4.将抛物线C4的顶点为N
如图1,已知抛物线c1:Y=a(x+2)²-5的顶点为P,与x轴相交A、B两点(点A在点B的左边),点B的横坐标是1
如图2,点Q是x轴正半轴上的一点,将抛物线c1绕点Q旋转180°后得到抛物线C4.将抛物线C4的顶点为N,与X轴交与E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点A的坐标.

如图1,已知抛物线c1:Y=a(x+2)²-5的顶点为P,与x轴相交A、B两点(点A在点B的左边),点B的横坐标是1如图2,点Q是x轴正半轴上的一点,将抛物线c1绕点Q旋转180°后得到抛物线C4.将抛物线C4的顶点为N
∵抛物线C4由C1绕点x轴上的点Q旋转180°得到,
∴顶点N、P关于点Q成中心对,
顶点P的为(-2,-5)
可知点N的纵坐标为5,
设点N坐标为(m,5),
作PH⊥x轴于H,作NG⊥x轴于G,
作PK⊥NG于K,
∵旋转中心Q在x轴上,
∴EF=AB=2BH=6,
∴FG=3,点F坐标为(m+3,0).
H坐标为(-2,0),K坐标为(m,-5),
根据勾股定理得:
PN2=NK2+PK2=m2+4m+104,
PF2=PH2+HF2=m2+10m+50,
NF2=52+32=34,
2∠PNF=90°时,PN2+NF2=PF2,解得m= 44/3,
∴Q点坐标为(19/3,0).
②当∠PFN=90°时,PF2+NF2=PN2,解得m=10/3,
∴Q点坐标为(2/3,0).
③∵PN>NK=10>NF,
∴∠NPF≠90°
综上所得,当Q点坐标为(19/3,0)或(2/3,0)时,以点P、N、F为顶点的三角形是直角三角形.

来个图看看阿!!

图1中,点B坐标(1,0),抛物线C1的解析式:0=a(1+2)²-5解之得a=5/9.则点A坐标可求(-5,0)
图2与第一题有无关系?B点横坐标还是1吗?P(-2,-5),设Q点坐标(m,0),N点坐标
(2m+2,0),抛物线c1、c4关于Q点对称,线段PN关于Q对称,F点是A点关于Q的对称点又在抛物线c4上,PNF是直角三角形,则只能是抛物线成x=2m+2的直线,...

全部展开

图1中,点B坐标(1,0),抛物线C1的解析式:0=a(1+2)²-5解之得a=5/9.则点A坐标可求(-5,0)
图2与第一题有无关系?B点横坐标还是1吗?P(-2,-5),设Q点坐标(m,0),N点坐标
(2m+2,0),抛物线c1、c4关于Q点对称,线段PN关于Q对称,F点是A点关于Q的对称点又在抛物线c4上,PNF是直角三角形,则只能是抛物线成x=2m+2的直线,故A点坐标是(-2,0)

收起

-2,0

图呢?

已知:抛物线C1 C2关于x轴对称,抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C1 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1, 已知:抛物线C1 C2关于x轴对称,抛物线C2 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1,如图,已知:抛物线C1 C2关于x轴对称,:抛物线C2 C3关于y轴对称,如果抛物线C2的解析式是:y=-3/4(x-2)^2+1, 35.已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴相交于A、B、C、35. 已知:如图,抛物线C1、C2关于x轴对称;抛物线C1、C3关于y轴对称.抛物线C1、C2、C3与x轴 如图,已知抛物线C1:y=2/3x的平方+16/3x+8与抛物线C2关于y轴对称,求抛物线C2的解析式 两个抛物线关于原点对称,高手帮忙啊!如图,抛物线C1:y=½x²+4x与抛物线C2关于坐标原点成中心对称.直线y=x分别与抛物线C1,C2.交于点A,B. (1)直接写出抛物线C2的解析式(2)在抛物线C1的对 如图,已知抛物线C1的解析式为y=-x^2+2x+8,图像与y轴交于D点,并且顶点A在双曲线上.若开口向上的抛物线C2与C1的形状、大小完全相同,并且C2的顶点P始终在C1上,证明:抛物线C2一定经过A点 如图,抛物线C1:y=x²-4x+b与x轴交于A、B,直线y=1/2x-3分别交x轴、y轴于D点和C点,抛物线C1的顶点E在直线CD上(1)求抛物线C1的解析式;(2)将抛物线C1的顶点沿射线DE的方向平移的抛物线C2,抛 如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;1、求点P的坐标及a的值。2、如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移 如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;1、求点P的坐标及a的值.2、如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移 已知抛物线C1与抛物线C2关于x轴对称,且抛物线C1的解析式是y=-x²+2ax-8(a²>8)(1)写出抛物线C1的开口方向、定点坐标、对称轴及抛物线C2的解析式(2)证明抛物线C1与C2有两个交点,并 如图,已知抛物线c1;y=a(x+2)2-5的顶点p,与x轴相交于a·b两点点a在点b左边,点b的横坐标是1 如图1,已知抛物线c1:Y=a(x+2)²-5的顶点为P,与x轴相交A、B两点(点A在点B的左边),点B的横坐标是1如图2,点Q是x轴正半轴上的一点,将抛物线c1绕点Q旋转180°后得到抛物线C4.将抛物线C4的顶点为N 如图,抛物线c1:y=ax^2-2ax-c 与x轴交于A,B,且AB=6,与y轴交于C(0,-4 ).如图,抛物线c1:与x轴交于A、B,且AB=6,与y轴交于C(0,-4 ).备用图(1)备用图(2)(1)求抛物线c1的解析式;(2)问抛物线c1上是否存 如图1,A为抛物线c1:y=1/2x²-2的顶点,B(1,0),直线AB交抛物线c1于另一点C(2)如图2,直线x=3交直线AB于D、交抛物线c1于E,动直线x=a交直线AB于F、交抛物线c1于G,当FG:DE=4:3时,求a的值. (3)如图3,将抛 如图,抛物线C1:y=x²-4x+b与x轴交于A、B,直线y=1/2x-3分别交x轴、y轴于D点和C点,抛物线C1的顶点E在直线CD上(1)求抛物线C1的解析式;我是这样求C1的解析式的我先把抛物线和一次函数联幂那 如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于 点B、C,与y 轴相交于点E如图,已知抛物线的方程C1:y=- (x+2)(x-m)(m>0)与x 轴相交于点B、C,与y 轴相交于点E,且点B 在点C 的左侧.(1)若抛物线C1 如图,已知椭圆C1:y^/a^+x^/b^=1(a>b>1)与抛物线C2:x^=2py(p>0)的交点分别为A、B.(1)若C2的焦点恰好是C1的上焦点F,且直线AB过点F,求C1的离心率(2)设P=1/4,且抛物线C2在点A处的切线l与y轴的交点为D(0,-2),求a^+b 已知抛物线C1:y=x^2-2x的图像如图所示,把C1的图像沿y轴翻折,得到抛物线C2的图像已知抛物线C1;y=x^2-2x的图像如图所示,把C1的图像沿y轴翻折,得到抛物线C2的图像,1)若直线y=x+b与抛物线y=ax^2+bx+c(a