罗素悖论定义把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A}Q={A∣A¢A}(¢

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:04:36

罗素悖论定义把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A}Q={A∣A¢A}(¢
罗素悖论定义
把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:
P={A∣A∈A}
Q={A∣A¢A}(¢:不属于的符号,因为实在找不到)
问,Q∈P 还是 Q∈Q?
其中的A∈A及A¢A如何理解?
自身属于自身以及自身不属于自身怎么理解?

罗素悖论定义把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A}Q={A∣A¢A}(¢
q指不属于自身的类
p指属于自身的类
a是指类中的项,A∈A就是属于自身的项,A¢A就是不属于自身的项(要联系类看,Q就是指由不属于自身的项构成的一个类)
于是q假如属于p,则明显与定义相悖;
q假如不属于p,因为p是指属于自身的类,那么q就是不属于自身的类,这样和q的定义相符了,又是应该是属于自身的类,反而是属于p了.
于是无论作何选择都会产生悖论
简单点说,有个理发师悖论比较类似:
在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城.我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸.我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人.可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸.

在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自...

全部展开

在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。

收起

在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自...

全部展开

在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
理发师悖论与罗素悖论是等价的:
因为,如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。

收起

比如说集合A={1} 集合B={B}
则A属于P,B属于Q

罗素悖论定义把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A}Q={A∣A¢A}(¢ 罗素悖论 在集合中怎么理解把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A} 罗素悖论其实很容易解决.把所有集合分为2类:第一类P中的集合以其自身为元素,第二类Q中的集合不以自身为元素.问Q属于P,还是Q属于Q?首先,P和Q都是集合,不能用属于关系,只能用包含关系;其次 罗素悖论在集合中怎么理解啊 ?符号“不属于”打不出来就用写文字 悖论多多 为什么那么多逻辑死角脑子大了 狭义相对论的双子悖论 罗素罗兰的类的集合悖论 光速不变的2个条件的悖论 相对性原理的悖论 还有一大堆逻辑死角 人类就带着这么多悖论上路了 如何理解罗素悖论?能否构造出集合X={E:E属于E}这是似乎是罗素悖论当中的一个定义,但是一个元素E属于E,E本身就是一个集合,然后自己属于自己,这样的集合能构造出来么?那么罗素悖论是不是 关于罗素悖论的一个小疑问罗素悖论具体的内容不再赘述只想请问一点就是悖论中假设“如果集合A属于集合A”这一句,“属于”关系不是仅存在于元素和集合之间的么如果说集合A属于集合A, “罗素悖论“就是概括了所有悖论特性的理论吗? 罗素悖论是什么? 什么是罗素悖论? 罗素悖论的故事 什么是“罗素悖论” 罗素悖论是的撒 拜里悖论和集合悖论的定义及例子 分类,把老虎钳、天平分为第一类,把镊子、指甲钳分为一类,分类标准是 罗素悖论与理发师悖论如果S不∈S,因为集合S由所有满足条件A不∈A的集合A组成,由于S不∈S,即知道S当然就在S中,也就是说S∈S.如果S∈S,因为S中任何一个元素A都有A不∈A,又由于S∈S,即知道S是S 集合论悖论就是罗素悖论吗? 罗素悖论怎么解决的?