∫[x^3/(9+x^2)]dx答案是x^2/2-9/2*ln(x^2+9)+C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:44:51
∫[x^3/(9+x^2)]dx答案是x^2/2-9/2*ln(x^2+9)+C
∫[x^3/(9+x^2)]dx
答案是x^2/2-9/2*ln(x^2+9)+C
∫[x^3/(9+x^2)]dx答案是x^2/2-9/2*ln(x^2+9)+C
∫[x^3/(9+x^2)]dx
=∫(1/2)[x^2/(9+x^2)]d(x^2)
=(1/2)∫[1-9/(9+x^2)]d(x^2)
=(1/2)∫d(x^2)-(9/2)∫1/(x^2+9)d(x^2+9)
=x^2/2-9/2*ln(x^2+9)+C
=∫(X^3+9X-9X)/(9+X^2)dx
=∫xdx-∫9x/(9+x^2)dx
=x^2/2-9/2ln(9+x^2)+C
∫[x^3/(9+x^2)]dx答案是x^2/2-9/2*ln(x^2+9)+C
∫x^3/9+X^2 dx.
∫3+x/(9-x^2)dx
∫x^3/(9+x^2)dx
∫[xe^x/(1+x)^2]dx答案给的是e^x/(1+x) +c
x-9/[(根号)x]+3 dx ∫ x+1/[(根号)x] dx ∫ [(3-x^2)]^2 dx
∫2^x*3^x/(9^x-4^x) dx答案有点出入感觉 ln|(3^x+2^x)/(3^x-2^x)|+C / 2(ln2-ln3)
求∫dx/x(9-x^2)^0.5的解,要过程问题是∫dx/x(9-x^2)^0.5答案是1/3ln((3-(9-x^2)^0.5)/x)
求不定积分(1-x^2)^3/2dx答案是x/根号(1-x^2) +c
不定积分dx/根号((x^2+1)^3) 答案是x/根号(1+x^2)+c
求∫[(ln(x+1)-lnx)/(x(x+1))]dx答案是(-1/2)(ln[(x+1)/x])^2+c
2x-1/ x^2-x+3 dx 不定积分 答案是ln(x^2-x+3 )+c
f'(x^3)dx=x^3+c 则f(x)=?∫f'(x^3)dx=x^3+c 则f(x)=?答案是(9/5)x^(5/3)+c
已知∫xf(x)dx=arcsinx+C,求∫1/f(x)dx答案是-1/3(1-x^3)^2+C
∫[(x^2-x+6)/(x^3+3x)]dx
∫x/(4+9x^2)dx
∫dx/x(2x+3)^2
∫(2^x+3^x)²dx