用换元法求定积分,
来源:学生作业帮助网 编辑:作业帮 时间:2024/10/31 16:28:25
用换元法求定积分,
用换元法求定积分,
用换元法求定积分,
设 x = tant,则 dx = (sect)^2*dt.当 x = 0时,t = 0.当 x = 1时,t = π/4
∫dx/√(1+x^2)^3
=∫(sect)^2*dt/(sect)^3
=∫dt/(sect)
=∫cost*dt
=sint|0~π/4
=sin(π/4) - sin0
=√2/2
收录互联网各类作业题目,免费共享学生作业习题
香蕉皮慧海网手机作业共收录了 千万级 学生作业题目
来源:学生作业帮助网 编辑:作业帮 时间:2024/10/31 16:28:25
用换元法求定积分,
用换元法求定积分,
用换元法求定积分,
设 x = tant,则 dx = (sect)^2*dt.当 x = 0时,t = 0.当 x = 1时,t = π/4
∫dx/√(1+x^2)^3
=∫(sect)^2*dt/(sect)^3
=∫dt/(sect)
=∫cost*dt
=sint|0~π/4
=sin(π/4) - sin0
=√2/2