如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称点A’,连接A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:14:22
如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称点A’,连接A
如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称
如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称点A’,连接A’B交l于P,则PA+PB=A’B的值最小.应用:如图2,∠AOB=45°,P是∠AOB内一点,PO=10,Q,R分别是OA,OB上的动点,求△PQR周长的最小值.
如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称点A’,连接A
过R做OA对称点R',连结R'P,则R'Q=RQ,R'Q+QP≥R'P,所以当R',Q,P三点共线时,C△PQR取最小,又OP=10,∴最小值为[10×sqrt(2)]
几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法:做
几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法:几何模型:条件:如图,A、B是直线l同旁的两个定点.在直线l上确定一点P,使PA+PB的值最小.方法:
如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称如图1,A,B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB最小.方法:作点A关于l的对称点A’,连接A
几何模型:条件:如左下图,A,B是直线L同旁的两个定点.在直线L上确定一点P,使PA+PB=A`B的值最小不必证明
几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:做点A关于直线l的对称点A’,连接A’B叫l与点P,则PA+PB=A’B的最小值(不用证明)模型应用
几何模型: 条件:在直线l同旁的两个定点. 问题:在直线l上确定一点p,使pa+pb的值最小.方案:做点a关于直线l的对称点a’,连接a‘b交于点p,则pa+pb=a’b的值最小.模型应用:(1)如图(2),
如图,A、B是直线l同旁两点,在直线l到A、B两点距离之和最小的点是
一道数学题,第一小问要答案,条件:在如下左图,A、B是直线L同旁的两个定点在直线L上确定一点P,使PA+PB的值最小方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必
如图,直线A,B被直线l所截,在已标出的角中,分别找出所有的同位角,内错角和同旁内直线AE,FC被直线BC所截,哪些角是同位角和同旁内角?直线AE,FC被直线AD所截,哪些角是同位角和同旁内角?类似的,
如图,A.B是直线L同侧的两定点,定长线短P.Q在L上移动,问P.Q移动到什么地方AP+PQ+QB的长最短?请证明
求图片:如图,A.B是直线L同侧的两定点,定长线短P.Q在L上移动,问P.Q移动到什么地方AP+PQ+QB的长最短?
如图,直线A,B被直线l所截,在已标出的角中,分别找出所有的同位角,内错角和同旁内角.如图,直线A,B被直线l所截,在已标出的角中,分别找出所有的同位角、内错角和同旁内角.还有这个
如图,在直线l上有动线段CD,在直线l的同侧有两定点A,B在CD运动过程中请画出使四边形ABCD周长最短的CD的位置
已知:如图3-5,A、B两点在直线l的同侧,点A’与A关于直线l对称,连接A’B=a. (1)若点M是直线l上异于点P已知:如图3-5,A、B两点在直线l的同侧,点A’与A关于直线l对称,连接A’B=a.(1)若点M是直线l上异
如图 ,直线a b被直线l所截,已知∠1等于40度试求角2的同位角及同旁内角的度数 我很如图 ,直线a b被直线l所截,已知∠1等于40度试求角2的同位角及同旁内角的度数
A,B是直线L同侧的两定点,定长线段PQ在L上平行移动,问PQ移动到什么位置时,AP+PQ+QB
如图,直线l是一条公路,A,B是两个村庄(在直线l的同侧),现要在公路上建一个加油站,设为P,使得两个村到加油站的距离之和最小,即PA+PB最小.(1)请在图上画出点P,并说明理由(2)若A,B两点到
一道初二数学轨迹题已知直线L及L同旁两点A B在直线L上作点Q,使QA-QB的绝对值最大这是图