设f(x)=f1(x)=(1+x)/(x-1) ,f n+1 (x)=f[fn(x)],则f2011(x)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:10:14

设f(x)=f1(x)=(1+x)/(x-1) ,f n+1 (x)=f[fn(x)],则f2011(x)=
设f(x)=f1(x)=(1+x)/(x-1) ,f n+1 (x)=f[fn(x)],则f2011(x)=

设f(x)=f1(x)=(1+x)/(x-1) ,f n+1 (x)=f[fn(x)],则f2011(x)=
像这种题目肯定是有一种循环的结果.
f(x)=f1(x)=(1+x)/(x-1)
f2(x)=f[f1(x)]=f((1+x)/(x-1))=x
f3(x)=f(f2(x))=(1+x)/(x-1)
.
.
.
f2011(x)=(1+x)/(x-1)

1