用柯西不等式证明2/a+b +2/b+c +2/c+a大于9/a+b+c a.b.c为互不相等的正数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:44:55
用柯西不等式证明2/a+b +2/b+c +2/c+a大于9/a+b+c a.b.c为互不相等的正数
用柯西不等式证明2/a+b +2/b+c +2/c+a大于9/a+b+c a.b.c为互不相等的正数
用柯西不等式证明2/a+b +2/b+c +2/c+a大于9/a+b+c a.b.c为互不相等的正数
柯西不等式的关键是构造平方,
故为证原不等式
[2/(a+b)]+[2/(b+c)]+[2/(a+c)]≥9/(a+b+c)
我们可等价变为
{1/[(a+b)/2]}+{1/[(b+c)/2]}+{1/[(a+c)/2]}≥9/(a+b+c)
(上下都除以2)
亦即求证
(a+b+c)【{1/[(a+b)/2]}+{1/[(b+c)/2]}+{1/[(a+c)/2]}】≥9
而又:
a+b+c=(a+b)/2+(b+c)/2+(a+c)/2
故
由柯西不等式
(a+b+c)【{1/[(a+b)/2]}+{1/[(b+c)/2]}+{1/[(a+c)/2]}】
=[(a+b)/2+(b+c)/2+(a+c)/2]【{1/[(a+b)/2]}+{1/[(b+c)/2]}+{1/[(a+c)/2]}】
≥[(1+1+1)]^2
=9
故原不等式成立
用柯西不等式证明一道题目!2/a+b + 2/b+c + 2/c+a>9/a+b+c要详细的用柯西不等式证明
用均值不等式证明a^2/b+c+b^2/a+c+c^2/a+b>a+b+c/2
用柯西不等式证明2/a+b +2/b+c +2/c+a大于9/a+b+c a.b.c为互不相等的正数
a,b,c>0,a+b+c=1.证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2>=100/3用柯西不等式解
a,b,c属于R+ 用排序不等式证明a^2/b+c+b^2/c+a+c^2/a+b>=1/2(a+b+c)注意是用排序不等式!2.用柯西不等式证明a^2011+b^2011+c^2011>=a^2010*b+b^2011*c+c^2011*a没有把题目弄反 ,原题就是这样
一道不等式证明已知a>b>c,求证a2/(a-b)+b2/(b-c)>a+2b+c
设a,b,c为正数且a+b+c=1,证明[a+(1/a)]^2+[b+(1/b)]^2+[c+(1/c)]^2>=100/3用柯西不等式或均值不等式证明
证明绝对值不等式1,|a-b|≤|a|+|b| 2,|a-b|≤|a-c|+|c-b|感激哥哥姐姐~
证明不等式2ab/(a+b)
一道不等式证明实数a,b,c满足a>b>c,且a+b+c=1,a^2+b^2+c^2=1,证明1
证明不等式a^2b^2+b^2c^2+c^2a^2≥abc(a+b+c)不懂,
请问不等式证明:a^2/b+b^2/c+c^2/a大于或等于a+b+c
高中不等式证明,方法多点证:a^(2a)b^(2b)c^(2c)≥a^(b+c)b^(c+a)c^(a+b).
柯西不等式问题已知a,b,c属于正数,求证(b^2c^2+c^2a^2+a^2b^2)/(a+b+c) ≥abc用柯西不等式证明
证明不等式:|a-b|
证明不等式:|a+b|
证明不等式a^2+b^2>2(a-b-2)
用不等式证明a/b+b/a>2,