设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量(2)证明矩阵P为可逆矩阵(3)求P^(-1)CP
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:51:40
设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量(2)证明矩阵P为可逆矩阵(3)求P^(-1)CP
设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),
矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),
证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量
(2)证明矩阵P为可逆矩阵
(3)求P^(-1)CP
设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量(2)证明矩阵P为可逆矩阵(3)求P^(-1)CP
AB^T 的特征值为 B^TA,0,0,...,0
且由 CA = AB^TA = (B^TA)A 知 A 是C的属于特征值B^TA的特征向量.
因为 Q 是正交矩阵
所以 B^Tqi = 0
所以 Cqi = AB^Tqi = 0
所以 q1,...,qn-1 是 C 的属于特征值0的线性无关的特征向量
所以 q1,...,qn-1,A 线性无关 (定理:属于不同特征值的特征向量线性无关)
所以 P 是可逆矩阵
且 P^-1CP = diag(0,0,..,0,B^TA)
设a,b为3维列向量,且a^Tb=2,A=I-ab^T,则A^2n=?
设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量(2)证明矩阵P为可逆矩阵(3)求P^(-1)CP
设A为m×n矩阵,对任何m维列向量b,AX=b有解,则(A∧T)A可逆...A∧T指A的转置.前两行。怎么得来的
设向量a,向量b是两个不共线的非零向量,t的值为全体实数,若向量a,向量b的起点记为o,当t为何值时,三...设向量a,向量b是两个不共线的非零向量,t的值为全体实数,若向量a,向量b的起点记为o,当t为
设向量a,向量b是两个不共线的非零向量,t的值为全体实数,若向量a,向量b的起点记为o,当t为何值时,三...设向量a,向量b是两个不共线的非零向量,t的值为全体实数,若向量a,向量b的起点记为o,当t为
设向量a,向量b是两个不共线的非零向量.(1)若向量OA=向量a,向量OB=t*向量b,向量OC=1/3(向量a+向量b),t∈R,那么当实数t为何知值时,A,B,C三点共线?(2)若向量a=向量b=1,且向量a与向量b夹角为120度,那么实
设A,B为n维列向量,则n阶矩阵c=ab^t的秩为r(a)= ,为什么不是等于n,答案是0或1
设T为正交阵,x为n维列向量,若|T|1,设T为正交阵,x为 n 维列向量,若 |Tx| = 2,则 |x|=?2,设A为 n 阶是对阵矩阵,证明:A是正定矩阵的充分必要条件是,存在正定矩阵B,使得:A = B.B3,已知矩阵 A={(0,x,1),(0,2,0)
设向量a,向量b为不共线的两个向量向量c=向量a+λ*向量b,向量d=(向量b-2*向量a)且向量c,向量d共线,求λ的值
设A为n阶矩阵,b为n维列向量,证明Ax=b有唯一解的充分必要条件是A可逆
设向量a/b是不共线的两个非0向量,1.若向量OA=2向量a-向量b,向量OB=3向量a+向量b,向量OC=向量a-3向量b求证A,B,C三点共线2,若8向量a+k向量b与k向量a+2向量b共线求k3设向量OM=m向量a,向量ON=n向量b,向量OP=
设A为n阶正交矩阵;a,b为两个n维的向量,求证1.(Aa,Ab)=(a,b) 2.||Aa||=||A||
n维向量与矩阵乘法.一个矩阵与一组向量的乘法若向量组α1.αs,为n维列向量,设该向量组为B,A为mxn的矩阵,则BA=(Aα1,Aα2,.Aαs).BA的结果怎么的出来的?我脑子转不过来.
设向量a为n维列向量,a^t*a=1,令H=E-2a*a^t,证明H是正交矩阵
设向量a.b是两个不共线的非零向量(t∈R)1.记向量OA=向量a,向量OB=向量tb,向量OC=1/3(向量a+向量b),那么当t为何值时,A,B,C 三点共线?2.若|向量a|=|向量b|=1 且 向量a与向量b夹角为120°,那么实数x为何值
设 n 维行向量 ,矩阵 A = E + 2aa^T ,B = E -aa^T ,其中 E 为 n 阶单位阵 ,则 A B =
设n维列向量组a1,a2,---,as线性无关,则n维列向量组b1,b2,bs线性无关的充分必要条件为A,两个向量组等价.B,矩阵A=(a1,a2,an)与矩阵B=(b1,b2,bs)等价.为什么选B
设向量a,b为两个不平行的向量,若向量p=2向量a-向量b与向量q=向量-a+λ向量b(λ为实数)平行,则λ的值为