A为n阶非奇异的矩阵(n>2),A*为A的伴随矩阵,则下面那种说法是对的1.A的逆矩阵的伴随矩阵=A乘以A的行列式的倒数;2.A的逆矩阵的伴随矩阵=A乘以A的行列式;3.A的逆矩阵的伴随矩阵=A的逆矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:46:21

A为n阶非奇异的矩阵(n>2),A*为A的伴随矩阵,则下面那种说法是对的1.A的逆矩阵的伴随矩阵=A乘以A的行列式的倒数;2.A的逆矩阵的伴随矩阵=A乘以A的行列式;3.A的逆矩阵的伴随矩阵=A的逆矩阵
A为n阶非奇异的矩阵(n>2),A*为A的伴随矩阵,则下面那种说法是对的
1.A的逆矩阵的伴随矩阵=A乘以A的行列式的倒数;
2.A的逆矩阵的伴随矩阵=A乘以A的行列式;
3.A的逆矩阵的伴随矩阵=A的逆矩阵乘以A的行列式的倒数;
4.A的逆矩阵的伴随矩阵=A的逆矩阵乘以A的行列式;

A为n阶非奇异的矩阵(n>2),A*为A的伴随矩阵,则下面那种说法是对的1.A的逆矩阵的伴随矩阵=A乘以A的行列式的倒数;2.A的逆矩阵的伴随矩阵=A乘以A的行列式;3.A的逆矩阵的伴随矩阵=A的逆矩阵
A的逆矩阵的伴随矩阵 (A^-1)*
因为 A^-1(A^-1)* = |A^-1|E
所以 (A^-1)* = |A|^-1A
所以 (1)正确

不错的啊

懂得那个

1

设N阶矩阵A为非奇异的,证A^T为非奇异的 设n阶矩阵A为非奇异的.证明at为非奇异的. 若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵 n阶矩阵A非奇异的充要条件是 矩阵 线性代数 (A*)* = |A|^(n-2) A 这个是怎么推得的?设A为n(n>2)阶非奇异矩阵,则() (A*)* = |A|^(n-2) A 设A为n阶非奇异矩阵,B为m*n矩阵.试证:r(AB)=r(B) 证:因为A非奇异,故可表示成若干个初等矩阵之积, 如何证明A+B为奇异矩阵A,B为n阶方阵,如果已知AB=BA,且A与B的特征值集合之间没有交集,如何证明A+B为非奇异?问题题目为“如何证明A+B为非奇异矩阵”,而非“A+B为奇异矩阵”,见谅 设A为n(n大于等于2)介非奇异方阵,若B为A的伴随矩阵,则B的伴随等于...设A为n(n大于等于2)介非奇异方阵,若B为A的伴随矩阵,则B的伴随等于?谢谢咯 刘老师,设A为n阶非奇异矩阵,B为n×m矩阵,试证:A与B之积的秩等于B的秩,即r(A...刘老师,设A为n阶非奇异矩阵,B为n×m矩阵,试证:A与B之积的秩等于B的秩,即r(AB)=r(B) 设n阶矩阵A非奇异(n≥2),求A的伴随矩阵的伴随矩阵.谢谢刘老师 A为n阶非奇异的矩阵(n>2),A*为A的伴随矩阵,则下面那种说法是对的1.A的逆矩阵的伴随矩阵=A乘以A的行列式的倒数;2.A的逆矩阵的伴随矩阵=A乘以A的行列式;3.A的逆矩阵的伴随矩阵=A的逆矩阵 设n阶矩阵A非奇异,n阶矩阵B满秩,则矩阵A*B的标准型是什么 设P为m阶非奇异矩阵,Q为n阶非奇异矩阵,A为m×n阶矩阵,则() R(PA)=R(A),R(AQ)≠R(A设P为m阶非奇异矩阵,Q为n阶非奇异矩阵,A为m×n阶矩阵,则()A.R(PA)=R(A),R(AQ)≠R(A)B.R(PA)≠R(A),R(AQ)=R(A)C.R(PA)=R(A),R(AQ)=R(A)D. 求证:当n为奇数时 n阶反衬矩阵A是奇异矩阵 设A,B均为n阶矩阵,且AB=BA,证明: 1)如果A有n个不同的特征值,则B相似于对角矩阵;2)如果A,B都相似与对角矩阵,则存在非奇异矩阵P,使得P-1AP与P-1BP均为对角矩阵. A为n阶非奇异矩阵,B为n*m矩阵,证明r(AB)=r(A)我已经知道r(AB)=r(B)和r(A)=n然后就不会了. A为n阶方阵,I为n阶单位矩阵,若A^2=A且A不等于I.证明A必为奇异矩阵 设n介矩阵A非奇异(n>=2),A*是A的伴随矩阵,则(A*)*=?