曲线xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线于另一点Ax+1(Xn+1,Yn+1)曲线C:xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线C于另一点Ax+1(Xn+1,Yn+1),点列An(n=1,2,3.)的横坐标构成
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:52:48
曲线xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线于另一点Ax+1(Xn+1,Yn+1)曲线C:xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线C于另一点Ax+1(Xn+1,Yn+1),点列An(n=1,2,3.)的横坐标构成
曲线xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线于另一点Ax+1(Xn+1,Yn+1)
曲线C:xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线C于另一点Ax+1(Xn+1,Yn+1),点列An(n=1,2,3.)的横坐标构成数列{Xn},其中X1=11/7.
(1)求Xn与X(n+1)的关系式.
有人这样解“过C上一点An(Xn,Yn)
作斜率为Kn=-1/(Xn+2)的直线方程为:
y=-1/(Xn+2) *(x-Xn)+ 1/Xn ,
与xy=1 联立得1/X=-1/(Xn+2) *(X-Xn)+1/Xn
解得X=(Xn+2)/Xn ”
我想知道的是“1/X=-1/(Xn+2) *(X-Xn)+1/Xn ” 怎么得到的“X=(Xn+2)/Xn ”
曲线xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线于另一点Ax+1(Xn+1,Yn+1)曲线C:xy=1,过C上一点An(xn,yn),做斜率Kn=-1/(Xn+2)的直线交曲线C于另一点Ax+1(Xn+1,Yn+1),点列An(n=1,2,3.)的横坐标构成
因为这题的下标很混乱,很容易引起混淆,所以我贴图了,因为不会排版,所以显得有点.
对造成的阅读麻烦表示抱歉.
Xn与X(n+1)的关系式:
X
Xn与X(n+1)的关系式是X